Temporal variation in discriminating Acacia species using optical and radar data


  • Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. U.S.A. 115 (10), 2264–2273. https://doi.org/10.1073/pnas.1719429115 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95 (6), 1511–1534. https://doi.org/10.1111/brv.12627 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576. (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Riera, M., Pino, J. & Melero, Y. Impact of introduction pathways on the spread and geographical distribution of alien species: implications for preventive management in mediterranean ecosystems. Divers. Distrib. 27 (6), 1019–1034. https://doi.org/10.1111/ddi.13251 (2021).

    Article 

    Google Scholar
     

  • Montagnani, C., Gentili, R., Brundu, G., Caronni, S. & Citterio, S. Accidental Introduction and Spread of Top Invasive Alien Plants in the European Union through Human-Mediated Agricultural Pathways: What Should We Expect? Agron. 12(2), 423. (2022). https://doi.org/10.3390/agronomy12020423

  • Vieites-Blanco, C. & González-Prieto, S. J. Invasiveness, ecological impacts and control of Acacias in Southwestern Europe – a review. Web Ecol. 20, 33–51. https://doi.org/10.5194/we-20-33-2020 (2020).

    Article 

    Google Scholar
     

  • Murugan, R., Beggi, F., Prabakaran, N., Maqsood, S. & Joergensen, R. G. Changes in plant community and soil ecological indicators in response to Prosopis juliflora and Acacia mearnsii invasion and removal in two biodiversity hotspots in Southern India. SEL 2 (1), 61–72. https://doi.org/10.1007/s42832-019-0020-z (2020).

    Article 
    CAS 

    Google Scholar
     

  • Keet, J. H., Ellis, A. G., Hui, C., Novoa, A. & Le Roux, J. J. Impacts of invasive Australian Acacias on soil bacterial community composition, microbial enzymatic activities, and nutrient availability in fynbos soils. Microb. Ecol. 82, 704–721. https://doi.org/10.1007/s00248-021-01683-1 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, A., Figueiredo, A. & Ferreira, V. Invasive Acacia tree species affect instream litter decomposition through changes in water nitrogen concentration and litter characteristics. Microb. Ecol. 82, 257–273. https://doi.org/10.1007/s00248-021-01749-0 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Riveiro, S. F., Cruz, Ó. & Reyes, O. Are the invasive Acacia melanoxylon and Eucalyptus globulus drivers of other species invasion? Testing their allelochemical effects on germination. New. For. 55 (4), 751–767. https://doi.org/10.1007/s11056-023-10001-1 (2024).

    Article 

    Google Scholar
     

  • Maoela, M. A., Roets, F., Jacobs, S. M. & Esler, K. J. Restoration of invaded cape floristic region riparian systems leads to a recovery in foliage-active arthropod alpha- and beta-diversity. J. Insect Conserv. 20 (1), 85–97. https://doi.org/10.1007/s10841-015-9842-x (2016).

    Article 

    Google Scholar
     

  • Rodríguez, J., Cordero-Rivera, A. & González, L. Characterizing arthropod communities and trophic diversity in areas invaded by Australian Acacias. Arthropod Plant. Interact. 14 (4), 531–545. https://doi.org/10.1007/s11829-020-09758-5 (2020).

    Article 

    Google Scholar
     

  • Henderson, L. & Wilson, J. R. Changes in the composition and distribution of alien plants in South africa: an update from the Southern African plant invaders atlas. Bothalia 47 (2), 1–26. https://doi.org/10.4102/abc.v47i2.2172 (2017).

    Article 

    Google Scholar
     

  • Dai, J. et al. Mapping understory invasive plant species with field and remotely sensed data in chitwan, Nepal. Remote Sens. Environ. 250, 112037. https://doi.org/10.1016/j.rse.2020.112037 (2020).

    Article 

    Google Scholar
     

  • Jensen, T., Hass, F. S., Akbar, M. S., Petersen, P. H. & Arsanjani, J. J. Employing machine learning for detection of invasive species using Sentinel-2 and AVIRIS data: the case of Kudzu in the united States. Sustainability 12 (9), 3544. https://doi.org/10.3390/SU12093544 (2020).

    Article 

    Google Scholar
     

  • Liu, X., Liu, H., Datta, P., Frey, J. & Koch, B. Mapping an invasive plant Spartina alterniflora by combining an ensemble one-class classification algorithm with a phenological NDVI time-series analysis approach in middle Coast of jiangsu, China. Remote Sens. 12 (24), 1–24. https://doi.org/10.3390/rs12244010 (2020).

    Article 

    Google Scholar
     

  • Masemola, C., Cho, M. A. & Ramoelo, A. Sentinel-2 time series based optimal features and time window for mapping invasive Australian native Acacia species in KwaZulu natal, South Africa. Int. J. Appl. Earth Obs Geoinf. 93, 102207. https://doi.org/10.1016/j.jag.2020.102207 (2020).

    Article 

    Google Scholar
     

  • Domingo, D., Pérez-Rodríguez, F., Gómez-García, E. & Rodríguez-Puerta, F. Assessing the efficacy of phenological spectral differences to detect invasive alien acacia dealbata using Sentinel-2 data in Southern Europe. Remote Sens. 15 (3), 722. https://doi.org/10.3390/rs15030722 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hu, X. et al. Radar vegetation indices for monitoring surface vegetation: developments, challenges, and trends. Sci. Total Environ. 945, 173974. https://doi.org/10.1016/j.scitotenv.2024.173974 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dronova, I. & Taddeo, S. Remote sensing of phenology: towards the comprehensive indicators of plant community dynamics from species to regional scales. J. Ecol. 110, 1460–1484. https://doi.org/10.1111/1365-2745.13897 (2022).

    Article 

    Google Scholar
     

  • Rajah, P., Odindi, J. & Mutanga, O. Assessing the synergistic potential of Sentinel-2 spectral reflectance bands and derived vegetation indices for detecting and mapping invasive alien plant species. SAJG 9 (1), 75–88 (2020).


    Google Scholar
     

  • Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C. & Fassnacht, F. E. UAV data as alternative to field sampling to map Woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 227, 61–73. https://doi.org/10.1016/j.rse.2019.03.025 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Nwobi, C., Williams, M. & Mitchard, E. T. Rapid Mangrove forest loss and Nipa palm (Nypa fruticans) expansion in the Niger delta, 2007–2017. Remote Sens. 12 (14), 23–44. https://doi.org/10.3390/rs12142344 (2020).

    Article 

    Google Scholar
     

  • Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354. https://doi.org/10.1016/j.rse.2018.07.006 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rebelo, A. J., Gokool, S., Holden, P. B. & New, M. G. Can Sentinel-2 be used to detect invasive alien trees and shrubs in Savanna and Grassland Biomes? RSASE. 23, p100600. (2021). https://doi.org/10.1016/j.rsase.2021.100600

  • Spracklen, B. & Spracklen, D. V. Synergistic use of Sentinel-1 and Sentinel-2 to map natural forest and Acacia plantation and stand ages in north-central Vietnam. Remote Sens. 13 (2), 1–19. https://doi.org/10.3390/rs13020185 (2021).

    Article 

    Google Scholar
     

  • Cowling, R. M., MacDonald, I. A. W. & Simmons, M. T. The cape peninsula, South africa: physiographical, biological and historical background to an extraordinary hot-spot of biodiversity. Biodivers. Conserv. 5, 527–550. https://doi.org/10.1007/BF00137608 (1996).

    Article 

    Google Scholar
     

  • Helme, N. A. & Trinder-Smith, T. H. The endemic flora of cape peninsula, South Africa. S Afr. J. Bot. 72 (2), 205–210. https://doi.org/10.1016/j.sajb.2005.07.004 (2006).

    Article 

    Google Scholar
     

  • South African Weather Service. Climate data: Cape Town. (2012). Available at: https://web.archive.org/web/20110314111749/http://old.weathersa.co.za/Climat/Climstats/CapeTownStats.jsp (Accessed: 11 July 2024).

  • van Wilgen, B. W. et al. Fire management in Mediterranean-climate shrublands: A case study from the cape fynbos, South Africa. J. Appl. Ecol. 47 (3), 631–638. https://doi.org/10.1111/j.1365-2664.2010.01800.x (2010).

    Article 

    Google Scholar
     

  • van Wilgen, B. W. Fire management in species-rich cape fynbos shrublands. Front. Ecol. Environ. 11 (1), e35–e45. https://doi.org/10.1890/120137 (2013).

    Article 

    Google Scholar
     

  • Le Maitre, D. C. et al. Impacts of invasive Australian Acacias: implications for management and restoration. Divers. Distrib. 17 (5), 1015–1029. https://doi.org/10.1111/j.1472-4642.2011.00816.x (2011).

    Article 

    Google Scholar
     

  • GBIF.org. The Global Biodiversity Information Facility (GBIF). (2023). Available from https://www.gbif.org [13 May 2023].

  • Sentinel-2 User Guide. European Space Agency. (2022). Available from https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook [14 February 2024].

  • Marzialetti, F. et al. Unmanned aerial vehicle (UAV)-based mapping of Acacia saligna invasion in the mediterranean Coast. Remote Sens. 13 (17), 3361. https://doi.org/10.3390/rs13173361 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vogelmann, J. E., Rock, B. N. & Moss, D. M. Red edge spectral measurements from sugar maple leaves. Remote Sens. 14 (8), 1563–1575. https://doi.org/10.1080/01431169308953986 (1993).

    Article 

    Google Scholar
     

  • Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Monitoring vegetation systems in the great plains with ERTS. NASA Special Publication. 351 (1), 309 (1974).

    ADS 

    Google Scholar
     

  • Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Yun-gang, C., Li-juan, Y. & Ze-zhong, Z. Extraction of information on geology hazard from multi-polarization SAR images. ISPRS Archives. 37, 1529–2532 (2008).


    Google Scholar
     

  • Vreugdenhil, M. et al. Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval. IEEE Trans. Geosci. Remote Sens. 54 (6), 3513–3531. https://doi.org/10.1109/TGRS.2016.2519842 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kim, Y. & van Zyl, J. J. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans. Geosci. Remote Sens. 47, 2519–2527. https://doi.org/10.1109/TGRS.2009.2014944 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ali, H., Salleh, M. M., Saedudin, R., Hussain, K. & Mushtaq, M. F. Imbalance class problems in data mining: a review. IJEECS 14, 1560–1571. https://doi.org/10.11591/ijeecs.v14.i3.pp1560-1571 (2019).

    Article 

    Google Scholar
     

  • Ramezan, C. A., Warner, T. A., Maxwell, A. E. & Price, B. S. Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sens. 13, 368. https://doi.org/10.3390/rs13030368 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Maxwell, A. E., Warner, T. A. & Fang, F. Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens. 39 (9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343 (2018).

    Article 

    Google Scholar
     

  • Breiman, L., Random & Forests Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).

    Article 

    Google Scholar
     

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM. (2016). https://doi.org/10.1145/2939672.2939785

  • de Sa, N. C. et al. Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring? Front. Plant. Sci. 9, 293. https://doi.org/10.3389/fpls.2018.00293 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, M. A., Ramoelo, A. & Dziba, L. Response of land surface phenology to variation in tree cover during green-up and senescence periods in the semi-arid savanna of Southern Africa. Remote Sens. 9 (7), 689. https://doi.org/10.3390/rs9070689 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Rajah, P., Odindi, J., Mutanga, O. & Kiala, Z. The utility of Sentinel-2 vegetation indices (Vis) and Sentinel-1 synthetic aperture radar (SAR) for invasive alien species detection and mapping. Nat. Conserv. 35, 41–61 (2019).

    Article 

    Google Scholar
     

  • Ulaby, F. T., Moore, R. K. & Fung, A. K. Microwave Remote Sensing: Active and Passive. 1–3 (Artech House, 1986).

  • Engman, E. T. Applications of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sens. Environ. 35 (2–3), 213–226. https://doi.org/10.1016/0034-4257(91)90013-V (1991).

    Article 
    ADS 

    Google Scholar
     

  • Gitelson, A. A., Kaufman, Y. J., Stark, R. & Rundquist, D. Novel algorithm for remote sensing Estimation of vegetation fraction. Remote Sens. Environ. 80 (1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Oumar, M. S., Peerbhay, K., Germishuizen, I., Mutanga, O. & Oumar, Z. Detecting canopy damage caused by Uromycladium acaciae on South African black wattle forest compartments using moderate resolution satellite imagery. SAJG 8 (1), 69–83. https://doi.org/10.4314/sajg.v8i1.5 (2022).

    Article 

    Google Scholar
     

  • Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8 (2), 127–150 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Glenn, E. P., Huete, A. R., Nagler, P. L. & Nelson, S. G. Relationship between remotely sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell Us about the landscape. Sens 8, 2136–2160. https://doi.org/10.3390/s8042136 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Rajah, P., Odindi, J. & Mutanga, O. Feature level image fusion of optical imagery and synthetic aperture radar (SAR) for invasive alien plant species detection and mapping. RSASE 10, 198–208. https://doi.org/10.1016/j.rsase.2018.04.007 (2018).

    Article 

    Google Scholar
     

  • Impson, F., Hoffmann, J. H. & Kleinjan, C. Australian Acacia species (Mimosaceae) in South Africa. In: (eds Muniappan, R., Reddy, G. V. & Raman, A.) P Biological Control of Tropical Weeds Using Arthropods. Cambridge University Press. 38–62 (2009).



  • Source link

    More From Forest Beat

    Coral reefs face an uncertain recovery from the 4th global mass...

    Tropical reefs might look like inanimate rock, but these colorful seascapes are built by tiny jellyfish-like animals called corals....
    Biodiversity
    5
    minutes

    Identifying ecological thresholds from functional traits for optimal ecosystem management

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Le Bagousse-Pinguet,...
    Biodiversity
    0
    minutes

    The niche concept in a changing world

    In the spring of 1958, G. Evelyn Hutchinson visited the sanctuary of Santa Rosalia on Mount Pellegrino in Palermo, Sicily. While examining a...
    Biodiversity
    1
    minute

    Thousands of endangered trees preserved for centuries inside Chinese temples

    Religious monuments in China have provided a refuge for ancient trees for thousands of years, including dozens of endangered species and some...
    Biodiversity
    1
    minute
    spot_imgspot_img