The biology and toxinology of blunt-nosed vipers


  • Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol. Evol. 28, 219–229 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Chan, Y. S. et al. Snake venom toxins: toxicity and medicinal applications. Appl. Microbiol. Biotechnol. 100, 6165–6181 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avella, I., et al. Unexpected lack of specialisation in the flow properties of spitting cobra venom. J. Exp. Biol. 224, jeb229229 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Braud, S., Bon, C. & Wisner, A. Snake venom proteins acting on hemostasis. Biochimie 82, 851–859 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kerkkamp, H. M. I., Casewell, N. R. & Vonk, F. J. in Evolution of Venomous Animals and Their Toxins (eds. Gopalakrishnakone, P. & Malhotra, A.) (Springer, 2015).

  • Daltry, J. C., Wüster, W. & Thorpe, R. S. Diet and snake venom evolution. Nature 379, 537–540 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barlow, A., Pook, C. E., Harrison, R. A. & Wüster, W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. B. 276, 2443–2449 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holding, M. L., Margres, M. J., Rokyta, D. R. & Gibbs, H. L. Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (Crotalus oreganus). J. Evolut. Biol. 31, 1513–1528 (2018).

    Article 

    Google Scholar
     

  • Tasoulis, T. & Isbister, G. A Review and database of snake venom proteomes. Toxins 9, 290 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casewell, N. R., Jackson, T. N. W., Laustsen, A. H. & Sunagar, K. Causes and consequences of snake venom variation. Trends Pharmacol. Sci. 41, 570–581 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damm, M., Hempel, B. -F. & Süssmuth, R. D. Old world vipers—a review about snake venom proteomics of Viperinae and their variations. Toxins 13, 427 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazandjian, T. D. et al. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science 371, 386–390 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward-Smith, H., Arbuckle, K., Naude, A. & Wüster, W. Fangs for the memories? A survey of pain in snakebite patients does not support a strong role for defense in the evolution of snake venom composition. Toxins 12, 201 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutiérrez, J. M., et al. Snakebite envenoming. Nat. Rev. Dis. Prim. 3, 17063 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Pintor, A. F. V., et al. Addressing the global snakebite crisis with geo-spatial analyses – recent advances and future direction. Toxicon: X 11, 100076 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts, N. L. S. et al. Global mortality of snakebite envenoming between 1990 and 2019. Nat. Commun. 13, 6160 (2022).

  • Harrison, R. A., Hargreaves, A., Wagstaff, S. C., Faragher, B. & Lalloo, D. G. Snake envenoming: a disease of poverty. PLoS Negl. Trop. Dis. 3, e569 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longbottom, J. et al. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet 392, 673–684 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization (WHO). Guidelines for the Prevention and Clinical Management of Snakebite in Africa (World Health Organization, 2010).

  • World Health Organization (WHO). Guidelines for the Management of Snakebites. (World Health Organization, Regional Office for South-East Asia, 2016).

  • Sant’Ana Malaque, C. M. & Gutiérrez, J. M. in Critical Care Toxicology (eds Brent, J. et al.) (Springer International Publishing, 2015) https://doi.org/10.1007/978-3-319-20790-2_146-1.

  • Wilkins, D., Burns, D. S., Wilson, D., Warrell, D. A. & Lamb, L. E. M. Snakebites in Africa and Europe: a military perspective and update for contemporary operations. J. R. Army Med. Corps. 164, 370–379 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Amr, Z. S., Abu Baker, M. A. & Warrell, D. A. Terrestrial venomous snakes and snakebites in the Arab countries of the Middle East. Toxicon 177, 1–15 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suraweera, W., et al. Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study. eLife 9, e54076 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geniez, P. Snakes of Europe, North Africa & the Middle East: A Photographic Guide (Princeton Univ. Press, 2018).

  • Stümpel, N. & Joger, U. Recent advances in phylogeny and taxonomy of near and Middle Eastern vipers – an update. ZooKeys 31, 179–191 (2009).

    Article 

    Google Scholar
     

  • Speybroeck, J. et al. Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphib. Reptilia 41, 139–189 (2020).

    Article 

    Google Scholar
     

  • Nilson, G. & Andrén, C. Vipera lebetina transmediterranea, a new subspecies of viper from North Africa, with remarks on the taxonomy of V. lebetina and V. mauritanica (Reptilia: Viperidae). Bonn. Zool. Beitr. 39, 371–379 (1988).


    Google Scholar
     

  • Spawls, S. & Branch, B. The Dangerous Snakes of Africa (Bloomsbury, 2020).

  • World Health Organization (WHO). Snakebite information data platform. https://snbdatainfo.who.int/?data_id=dataSource_10-187d5a34599-layer-4%3A88 (2020).

  • Dehghani, R., et al. Medically important snakes and snakebite envenoming in Iran. Toxicon 230, 107149 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alshalah, A., Williams, D. J. & Ferrario, A. From fangs to antidotes: a scoping review on snakebite burden, species, and antivenoms in the Eastern Mediterranean Region. PLoS Negl. Trop. Dis. 18, e0012200 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jestrzemski, D., et al. Hospital admissions due to snake envenomation in the Republic of Cyprus: a 7-year retrospective review. J. Occup. Med. Toxicol. 17, 25 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nalbantsoy, A. et al. Determination of in vivo toxicity and in vitro cytotoxicity of venom from the Cypriot blunt-nosed viper Macrovipera lebetina lebetina and antivenom production. J. Venom. Anim. Toxins incl. Trop. Dis. 18, 208–216 (2012).

    Article 

    Google Scholar
     

  • Chowdhury, A. et al. Clinical implications of differential procoagulant toxicity of the palearctic viperid genus Macrovipera, and the relative neutralization efficacy of antivenoms and enzyme inhibitors. Toxicol. Lett. 340, 77–88 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulte, L., et al. Venomics of the Milos viper (Macrovipera schweizeri) unveils patterns of venom composition and exochemistry across blunt-nosed viper venoms. Front. Mol. Biosci. 10, 5510 (2023).

    Article 

    Google Scholar
     

  • Son, D. J. et al. Inhibitory effect of snake venom toxin from Vipera lebetina turanica on hormone-refractory human prostate cancer cell growth: induction of apoptosis through inactivation of nuclear factor κB. Mol. Cancer Ther. 6, 675–683 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, M. H. et al. Snake venom toxin inhibits cell growth through induction of apoptosis in neuroblastoma cells. Arch. Pharm. Res. 32, 1545–1554 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozen, M. O., İğci, N., Yalçin, H. T., Goçmen, B. & Nalbantsoy, A. Screening of cytotoxic and antimicrobial activity potential of Anatolian Macrovipera lebetina obtusa (Ophidia: Viperidae) crude venom. Front. Life Sci. 8, 363–370 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rima, M. et al. Vipers of the Middle East: a rich source of bioactive molecules. Molecules 23, 2721 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siigur, J., Aaspõllu, A. & Siigur, E. Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. Toxicon 158, 16–32 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenk, P., Kalyabina, S., Wink, M. & Joger, U. Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 19, 94–104 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrigues, T., Dauga, C., Ferquel, E., Choumet, V. & Failloux, A. -B. Molecular phylogeny of Vipera Laurenti, 1768 and the related genera Macrovipera (Reuss, 1927) and Daboia (Gray, 1842), with comments about neurotoxic Vipera aspis aspis populations. Mol. Phylogenet. Evol. 35, 35–47 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stümpel, N. Phylogenie und Phylogeographie eurasischer Viperinae unter besonderer Berücksichtigung der orientalischen Vipern der Gattungen Montivipera und Macrovipera (TU Carolo-Wilhelmina zu Braunschweig, 2012).

  • Hillis, D. M. Species delimitation in herpetology. J. Herpetol. 53, 3–12 (2019).

    Article 

    Google Scholar
     

  • Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 16 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miralles, A., Puillandre, N. & Vences, M. DNA Barcoding in species delimitation: from genetic distances to integrative taxonomy. Methods Mol. Biol. 2744, 77–104 (2024).

  • Oraie, H. et al. Molecular and morphological analyses have revealed a new species of blunt-nosed viper of the genus Macrovipera in Iran. Salamandra 54, 233–248 (2018).


    Google Scholar
     

  • Šmíd, J. & Tolley, K. A. Calibrating the tree of vipers under the fossilized birth-death model. Sci. Rep. 9, 5510 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venczel, M. & Ştiucǎ, E. Late middle Miocene amphibians and squamate reptiles from Taut,, Romania. https://doi.org/10.5281/ZENODO.4665621 (2008)

  • Mallow, D., Ludwig, D. & Nilson, G. True Vipers: Natural History and Toxinology of Old World Vipers (Krieger, 2003).

  • Uetz, P. et al. The reptile database. http://www.reptile-database.org/ (2025).

  • Sindaco, R., Venchi, A. & Grieco, C. The Reptiles of the Western Palearctic (Belvedere, 2013).

  • Aghasyan, A. et al. Macrovipera lebetina. The IUCN Red List of Threatened Species 2021. https://doi.org/10.2305/IUCN.UK.2021-3.RLTS.T157295A750117.en (2021).

  • McBride, E., Winder, I. C. & Wüster, W. What bit the ancient Egyptians? Niche modelling to identify the snakes described in the Brooklyn Medical Papyrus. Environ. Archaeol. https://doi.org/10.1080/14614103.2023.2266631 (2023).

  • Karamiani, R. & Hosseini, M. Modeling the past and contemporary habitat suitability and distribution of the Levantine viper Macrovipera lebetinus (Linnaeus, 1758) (Ophidia: Viperidae). J. Wildl. Biodivers. 8, 39–53 (2023).


    Google Scholar
     

  • Rouag, R., Ziane, N. & De Sousa, M. A tentative list of reptilian fauna of Algeria and their conservation status. Biodivers. Data J. 12, e120471 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stiller, M. et al. Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA. Proc. Natl Acad. Sci. USA 103, 13578–13584 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Straube, N. et al. Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens. Mol. Ecol. Resour. 21, 2299–2315 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, M., Zwick, A., Ślipiński, A., de Keyzer, R. & Pang, H. Museomics reveals extensive cryptic diversity of Australian prionine longhorn beetles with implications for their classification and conservation. Syst. Entomol. 45, 745–770 (2020).

    Article 

    Google Scholar
     

  • Major, T. et al. Museum DNA reveals a new, potentially extinct species of rinkhals (Serpentes: Elapidae: Hemachatus) from the Eastern highlands of Zimbabwe. PLoS ONE 18, e0291432 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jestrzemski, D. & Kuzyakova, I. Morphometric characteristics and seasonal proximity to water of the Cypriot blunt-nosed viper Macrovipera lebetina lebetina (Linnaeus, 1758). J. Venom. Anim. Toxins Incl. Trop. Dis. 24, 42 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egan, D. Field Guide to Snakes of the Middle East (Bloomsbury, 2022).

  • Baier, F., Sparrow, D. J. & Wiedl, H.-J. The amphibians and reptiles of Cyprus (Edition Chimaira, 2009).

  • Mermer, A., Göçmen, B. & Çiçek, K. Extreme cases of colour pattern and size in Levantine viper, Macrovipera lebetina (L., 1758) from the west of Euphrates Basin (southern Anatolia, Turkey). Biharean Biol. 6, 70–71 (2012).


    Google Scholar
     

  • Ščerbak, N. & Böhme, W. in Handbuch der Reptilien und Amphibien Europas. Schlangen III (eds. Joger, U. & Stümpel, N.) (Aula Verlag, 2005).

  • Iskenderov, T. M. & Javadov, S. A. Some aspects of thermobiology of the South Caucasian Gyurza (Macrovipera Lebetina Obtusa Dwigubsky, 1832). J. Entomol. Zool. Stud. 4, 960–963 (2016).


    Google Scholar
     

  • Cherlin, V. A. & Shepilov, S. A. Thermal biology of the Central Asian blunt-nosed viper (Macrovipera lebetina turanica) from Nuratau Crest and the Chernov blunt-nosed viper (Macrovipera lebetina cernovi) from Western Kysylkum. Biol. Bull. Russ. Acad. Sci. 41, 639–644 (2014).

    Article 

    Google Scholar
     

  • Al-Sheikhly, O. F. et al. Extraordinary colour morphs in the Lebetine (Levantine) Viper Macrovipera lebetinus (Linnaeus, 1758) from the Mesopotamian marshes of southern Iraq and southwestern Iran. Sauria 43, 38–50 (2021).


    Google Scholar
     

  • International Union for Conservation of Nature (IUCN). Macrovipera lebetinus. The IUCN Red List of Threatened Species. https://apistaging.iucnredlist.org/en/species/157295/207664712 (2024).

  • Oraie, H. Genetic evidence for occurrence of Macrovipera razii (Squamata, Viperidae) in the central Zagros region, Iran. Herpetozoa 33, 27–30 (2020).

    Article 

    Google Scholar
     

  • Kazemi, S. M., Hosseinzadeh, M. S. & Weinstein, S. A. Identifying the geographic distribution pattern of venomous snakes and regions of high snakebite risk in Iran. Toxicon 231, 107197 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kazemi, S. M., Hosseinzadeh, M. S., Mohajer, S. & Fois, M. Modelling potential snakebite risks of the endemic Iranian venomous snake Macrovipera razii (Serpentes: Viperidae) under climate change. Vie et. Milieu 73, 35–41 (2023).


    Google Scholar
     

  • Moradi, N., Rastegar-Pouyani, N. & Rastegar-Pouyani, E. Geographic variation in the morphology of Macrovipera lebetina (Linnaeus, 1758) (Ophidia: Viperidae) in Iran. Acta Herpetol. https://doi.org/10.13128/ACTA_HERPETOL-14384 (2014).

  • Di Nicola, M. R., Pozzi, A. V., Avella, I., Mezzadri, S. & Paolino, G. Taxonomy, biology and natural history of the Milos viper Macrovipera schweizeri (Werner, 1935): literature review and observations on autumnal activity and importance of residual pools. Spixiana 45, 111–130 (2022).


    Google Scholar
     

  • Freitas, I. et al. Evaluating taxonomic inflation: towards evidence-based species delimitation in Eurasian vipers (Serpentes: Viperinae). Amphib. Reptilia 41, 285–311 (2020).

    Article 

    Google Scholar
     

  • Nilson, G. in Islands and Snakes: Isolation and Adaptive Evolution (eds Lillywhite, H. B. & Martins, M.) Ch. 8 (Oxford Univ. Press, 2019).

  • International Union for Conservation of Nature (IUCN). Macrovipera schweizeri. The IUCN Red List of Threatened Species. https://apistaging.iucnredlist.org/species/12654/137843008 (2024).

  • Arponen, A. Prioritizing species for conservation planning. Biodivers. Conserv. 21, 875–893 (2012).

    Article 

    Google Scholar
     

  • Habel, J. C., Gossner, M. M. & Schmitt, T. What makes a species a priority for nature conservation?. Anim. Conserv. 23, 28–35 (2020).

    Article 

    Google Scholar
     

  • Nilson, G. in Handbuch der Reptilien und Amphibien Europas. Schlangen III (eds Stümpel, N. & Joger, U.) Ch. 2.2.4 (Aula Verlag, 2005).

  • Cattaneo, A. Macrovipera schweizeri (Werner, 1935): comparison of the populations of Milos and Sifnos islands (SW Cyclades) (Serpentes Viperidae). Zenodo https://doi.org/10.5281/ZENODO.4095082 (2020).

  • Van Valen, L. A new evolutionary law. Evolut. Theory 1, 1–30 (1973).


    Google Scholar
     

  • Lomolino, M. V. Body size evolution in insular vertebrates: generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).

    Article 

    Google Scholar
     

  • Schwaner, T. D. & Sarre, S. D. Body size of tiger snakes in Southern Australia, with particular reference to Notechis ater serventyi (Elapidae) on Chappell Island. J. Herpetol. 22, 24 (1988).

    Article 

    Google Scholar
     

  • Meik, J. M., Lawing, A. M. & Pires-daSilva, A. Body size evolution in insular speckled rattlesnakes (Viperidae: Crotalus mitchellii). PLoS ONE 5, e9524 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boback, S. M. Body size evolution in snakes: evidence from Island populations. Copeia 2003, 81–94 (2003).

    Article 

    Google Scholar
     

  • Keogh, J. S., Scott, I. A. W. & Hayes, C. Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution 59, 226–233 (2005).

    PubMed 

    Google Scholar
     

  • Barbo, F. E. et al. Another new and threatened species of lancehead genus Bothrops (Serpentes, Viperidae) from Ilha dos Franceses, Southeastern Brazil. Zootaxa https://doi.org/10.11646/zootaxa.4097.4.4 (2016).

  • Nilson, G., Andrén, C., Ioannidis, Y. & Dimaki, M. Ecology and conservation of the Milos viper, Macrovipera schweizeri (Werner, 1935). Amphib. Reptilia 20, 355–375 (1999).

    Article 

    Google Scholar
     

  • Arnold, E. N. & Ovenden, D. A Field Guide to the Reptiles and Amphibians of Britain and Europe (Collins, 2004).

  • Valakos, E. et al. The Amphibians and Reptiles of Greece (Edition Chimaira, 2008).

  • Creer, S., Chou, W. -H., Malhotra, A. & Thorpe, R. S. Offshore insular variation in the diet of the Taiwanese bamboo viper Trimeresurus stejnegeri (Schmidt). Zool. Sci. 19, 907–913 (2002).

    Article 

    Google Scholar
     

  • Siqueira-Silva, T. et al. Ecological and biogeographic processes drive the proteome evolution of snake venom. Glob. Ecol. Biogeogr. 30, 1978–1989 (2021).

    Article 

    Google Scholar
     

  • Frétey, T. Capitalised epithets in the works of Linnaeus (1758‒1767): findings and consequences in herpetology. Bionomina 16, 22–45 (2019).

    Article 

    Google Scholar
     

  • Linnaeus, C. Caroli Linnaei Systema Naturae per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. (Impensis Direct. Laurentii Salvii, Holmiae, 1758). https://doi.org/10.5962/bhl.title.542.

  • International Commission on Zoological Nomenclature. International Code of Zoological Nomenclature. (The International Trust for Zoological Nomenclature, 1999).

  • Boulenger, G. A. Catalogue of the Snakes in the British Museum (Natural History). Volume III, Containing the Colubridae (Opisthoglyphae and Proteroglyphae), Amblycephalidae, and Viperidae Vol. 3 (British Museum of Natural History, 1896).

  • Wallach, V., Williams, K. L. & Boundy, J. Snakes of the World (CRC Press, 2014).

  • Bowker, G. C. The game of the name: nomenclatural instability in the history of botanical informatics. In Proc. 1998 Conference on the History and Heritage of Science Information Systems (eds Bowden, M. E., Bellardo Hahn, T. & Williams, R. E.) 74–83 (Information Today, Inc., 1999).

  • Carrasco, P. A., Venegas, P. J., Chaparro, J. C. & Scrocchi, G. J. Nomenclatural instability in the venomous snakes of the Bothrops complex: Implications in toxinology and public health. Toxicon 119, 122–128 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oldrati, V. et al. Advances in venomics. Mol. BioSyst. 12, 3530–3543 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • von Reumont, B. M., et al. Modern venomics—current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 11, giac048 (2022).

    Article 

    Google Scholar
     

  • Lüddecke, T., et al. Venom biotechnology: casting light on nature’s deadliest weapons using synthetic biology. Front. Bioeng. Biotechnol. 11, 1166601 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calvete, J. J. Snake venomics: from the inventory of toxins to biology. Toxicon 75, 44–62 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avella, I., Wüster, W., Luiselli, L. & Martínez-Freiría, F. Toxic habits: an analysis of general trends and biases in snake venom research. Toxins 14, 884 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wüster, W., Peppin, L., Pook, C. E. & Walker, D. E. A nesting of vipers: Phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol. Phylogenet. Evol. 49, 445–459 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Bazaa, A., Marrakchi, N., El Ayeb, M., Sanz, L. & Calvete, J. J. Snake venomics: Comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina. Proteomics 5, 4223–4235 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanz, L., Ayvazyan, N. & Calvete, J. J. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J. Proteom. 71, 198–209 (2008).

    Article 
    CAS 

    Google Scholar
     

  • İğci, N. & Demiralp, D. O. A preliminary investigation into the venom proteome of Macrovipera lebetina obtusa (Dwigubsky, 1832) from Southeastern Anatolia by MALDI-TOF mass spectrometry and comparison of venom protein profiles with Macrovipera lebetina lebetina (Linnaeus, 1758) from Cyprus by 2D-PAGE. Arch. Toxicol. 86, 441–451 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Makran, B. et al. Snake venomics of Macrovipera mauritanica from Morocco, and assessment of the para-specific immunoreactivity of an experimental monospecific and a commercial antivenoms. J. Proteom. 75, 2431–2441 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pla, D., et al. Dagestan blunt-nosed viper, Macrovipera lebetina obtusa (Dwigubsky, 1832), venom. Venomics, antivenomics, and neutralization assays of the lethal and toxic venom activities by anti-Macrovipera lebetina turanica and anti-Vipera berus berus antivenoms. Toxicon X 6, 100035 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghezellou, P. et al. Comparative venom proteomics of Iranian, Macrovipera lebetina cernovi, and Cypriot, Macrovipera lebetina lebetina, giant vipers. Toxins 14, 716 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damm, M. et al. Venomics and peptidomics of palearctic vipers: a clade-wide analysis of seven taxa of the genera Vipera, Montivipera, Macrovipera, and Daboia across Türkiye. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.4c00171. (2024).

  • Jiménez Robles, O. & Martínez del Mármol Marín, G. Comments on the large paleartic vipers Macrovipera and Daboia in North Africa. http://www.moroccoherps.com/vipers-macrovipera-and-daboia-in-north-africa (2012).

  • İğci, N. & Demi̇ralp, D. O. A Fourier transform infrared spectroscopic investigation of Macrovipera lebetina lebetina and M. l. obtusa crude venoms. Eur. J. Biol. https://doi.org/10.26650/EurJBiol.2020.0039 (2020).

  • Gürbüz, R., Eroğlu Oylum, Ş., Apaydin, T., Yıldız, M. Z. & İğci, N. Individual variation in Macrovipera lebetinus obtusa (blunt-nosed viper) venom from a limited area in Southeastern Anatolia (Türkiye). Toxin Rev. https://doi.org/10.1080/15569543.2024.2411577 (2024).

  • Avella, I., et al. Interpopulational variation and ontogenetic shift in the venom composition of Lataste’s viper (Vipera latastei, Boscá 1878) from northern Portugal. J. Proteom. 263, 104613 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Avella, I. et al. One size fits all—venomics of the Iberian Adder (Vipera seoanei, Lataste 1878) reveals low levels of venom variation across its distributional range. Toxins 15, 371 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damm, M. et al. Venom variation among the three subspecies of the North African mountain viper Vipera monticola (Saint-Girons 1954). Biochimie https://doi.org/10.1016/j.biochi.2024.07.008. (2024).

  • Saviola, A. J. et al. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®. J. Proteom. 121, 28–43 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Senji Laxme, R. R., Khochare, S., Bhatia, S., Martin, G. & Sunagar, K. From birth to bite: the evolutionary ecology of India’s medically most important snake venoms. BMC Biol. 22, 161 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kini, R. M. Serine proteases affecting blood coagulation and fibrinolysis from snake venoms. Pathophysiol. Haemos Thromb. 34, 200–204 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gutiérrez, J. M., Rucavado, A. & Escalante, T. in Evolution of Venomous Animals and their Toxins (ed. Mackessy, S. P.) (CRC Press, 2010).

  • Eble, J. A. Structurally robust and functionally highly versatile—C-type lectin (-related) proteins in snake venoms. Toxins 11, 136 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro-Amorim, J. et al. Catalytically active snake venom PLA 2 enzymes: an overview of its elusive mechanisms of reaction: miniperspective. J. Med. Chem. 66, 5364–5376 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarray, S. et al. Lebecetin, a potent antiplatelet C-type lectin from Macrovipera lebetina venom. Biochim. Biophys. Acta 1651, 30–40 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olfa, K. -Z. et al. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab. Invest. 85, 1507–1516 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamza, L., Gargioli, C., Castelli, S., Rufini, S. & Laraba-Djebari, F. Purification and characterization of a fibrinogenolytic and hemorrhagic metalloproteinase isolated from Vipera lebetina venom. Biochimie 92, 797–805 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amoozgari, Z., Cheraghzadeh, M., Noorbehbahani, M. & Deli, N. L. Identification of fibrinolytic activity in Iranian Vipera lebetina venom. J. Mazandaran Univ. Med. Sci. 30, 17–25 (2020).


    Google Scholar
     

  • Herzig, V., et al. Animal toxins — Nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochem. Pharmacol. 181, 114096 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, A. L. et al. The chemistry of snake venom and its medicinal potential. Nat. Rev. Chem. 6, 451–469 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayvazyan, N. M. & Ghazaryan, N. A. Lipid bilayer condition abnormalities following Macrovipera lebetina obtusa snake envenomation. Toxicon 60, 607–613 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayvazyan, N. M., Zaqaryan, N. A. & Ghazaryan, N. A. Molecular events associated with Macrovipera lebetina obtusa and Montivipera raddei venom intoxication and condition of biomembranes. Biochim. Biophys. Acta1818, 1359–1364 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yücel Ağan, A. F. & Hayretdağ, S. The effects of Macrovipera lebetina venom on mice. Toxin Rev. 38, 87–92 (2019).

    Article 

    Google Scholar
     

  • Avagyan, G., et al. Histopathological changes of mice tissues in course of the envenomation by the Macrovipera lebetina obtusa venom and the neutralizing effect of the ovine-derived experimental antivenom. Toxicon 247, 107821 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arestakesyan, H., et al. Changes in attachment and metabolic activity of rat neonatal cardiomyocytes and nonmyocytes caused by Macrovipera lebetina obtusa venom. Toxicol. Vitr. 95, 105755 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Demiroz, T., Albayrak, G., Nalbantsoy, A., Gocmen, B. & Baykan, S. Anti-inflammatory properties of Centaurea calolepis Boiss. and cnicin against Macrovipera lebetina obtusa (Dwigubsky, 1832) and Montivipera xanthina (Gray, 1849) venoms in rat. Toxicon 152, 37–42 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kempson, K. et al. Age is just a number: ontogenetic conservation in activation of blood clotting factors VII, X, and XII by caucasus blunt-nosed viper (Macrovipera lebetina obtusa) venoms. Toxins 16, 520 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Süzergöz, F. et al. In vitro cytotoxic and proapoptotic activities of anatolian Macrovipera Lebetina Obtusa (Dwigubski, 1832) crude venom on cultured K562 human chronic myelogenous leukemia cells. UHOD 34, 37–46 (2016).


    Google Scholar
     

  • İğci, N., Özel, F. D. & Yıldız, M. Z. Cytotoxic activities of the crude venoms of Macrovipera lebetina lebetina from Cyprus and M. l. obtusa from Turkey (Serpentes: Viperidae) on human umbilical vein endothelial cells. Commagene J. Biol. 3, 110–113 (2019).

    Article 

    Google Scholar
     

  • Kakanj, M., Ghazi-Khansari, M., Zare Mirakabadi, A., Daraei, B. & Vatanpour, H. Cytotoxic effect of Iranian Vipera lebetina snake venom on HUVEC cells. Iran. J. Pharm. Res. 14, 109–114 (2015).

  • Chowdhury, A., Zdenek, C. N. & Fry, B. G. Diverse and dynamic alpha-neurotoxicity within venoms from the palearctic viperid snake clade of Daboia, Macrovipera, Montivipera, and Vipera. Neurotox. Res. 40, 1793–1801 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fatehi-Hassanabad, Z. & Fatehi, M. Characterisation of some pharmacological effects of the venom from Vipera lebetina. Toxicon 43, 385–391 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kazemi, S. M., Al-Sabi, A., Long, C., Shoulkamy, M. I. & Abd El-Aziz, T. M. Case report: recent case reports of levant blunt-nosed viper Macrovipera lebetina obtusa snakebites in Iran. Am. J. Trop. Med. Hyg. 104, 1870–1876 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morjen, M. et al. PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biol. 32, 52–62 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarray, S. et al. Lebectin and lebecetin, two C-type lectins from snake venom, inhibit α5β1 and αv-containing integrins. Matrix Biol. 26, 306–313 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammouda, M. B. et al. Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochim. Biophys. Acta 1862, 600–614 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jebali, J. et al. Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231. Toxicon 86, 16–27 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selistre-de-Araujo, H. S., Pontes, C. L. S., Montenegro, C. F. & Martin, A. C. B. M. Snake venom disintegrins and cell migration. Toxins 2, 2606–2621 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arruda Macêdo, J., Fox, J. & Souza Castro, M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci. 16, 532–548 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ghazaryan, N. A. et al. Anti-tumor effect investigation of obtustatin and crude Macrovipera lebetina obtusa venom in S-180 sarcoma bearing mice. Eur. J. Pharmacol. 764, 340–345 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcinkiewicz, C. et al. Obtustatin: a potent selective inhibitor of α1β1 integrin in vitro and angiogenesis in vivo. Cancer Res. 63, 2020–2023 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Hammouda, M. et al. Lebein, a snake venom disintegrin, induces apoptosis in human melanoma cells. Toxins 8, 206 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zakraoui, O. et al. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression. Mol. Carcinog. 56, 18–35 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues, R. et al. Snake venom phospholipases A2: a new class of antitumor agents. Protein Pept. Lett. 16, 894–898 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiu, J. J. & Yap, M. K. K. Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochem. Soc. Trans. 48, 719–731 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bazaa, A. et al. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biol. 28, 188–193 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warrell, D. A. Snake bite. Lancet 375, 77–88 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Malina, T., Krecsak, L. & Warrell, D. A. Neurotoxicity and hypertension following European adder (Vipera berus berus) bites in Hungary: case report and review. QJM 101, 801–806 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva, A. et al. Neurotoxicity in Russell’s viper (Daboia russelii) envenoming in Sri Lanka: a clinical and neurophysiological study. Clin. Toxicol. 54, 411–419 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Paolino, G. et al. Vipera snakebite in Europe: a systematic review of a neglected disease. Acad. Dermatol. Venereol. 34, 2247–2260 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cañas, C. A., Castro-Herrera, F. & Castaño-Valencia, S. Clinical syndromes associated with Viperidae family snake envenomation in southwestern Colombia. Trans. R. Soc. Trop. Med. Hyg. 115, 51–56 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fraser, L. A case of snake-bite in Cyprus. Trans. R. Soc. Trop. Med. Hyg. 23, 315 (1929).

    Article 

    Google Scholar
     

  • Guttmann-Friedmann, A. Blindness after snake-bite. Br. J. Ophthalmol. 40, 57–59 (1956).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tushiev, A. On the issue of clinics and treatment in bites by venomous snakes. Zdr. Turkm. 7, 32–34 (1963).


    Google Scholar
     

  • Hopkins, G. O. Snake bites in Cyprus. J. R. Army Med. Corps. 120, 19–23 (1974).

    Article 

    Google Scholar
     

  • Schweiger, M. Die Folgen eines schweres Bisses von Vipera lebetina obtusa; Seine medizinische Behandlung und Spatfolgen. Herpetofauna 26, 14–16 (1983).


    Google Scholar
     

  • Göçmen, B., Harikan, H., Ozbel, Y., Mermer, A. & Ciçek, K. Clinical, physiological and serological observations on human following Macrovipera lebetina lebetina (Reptilia: Serpentes) envenomating. Türkiye Parazitoloji Derg. 30, 50–54 (2006).


    Google Scholar
     

  • Köse, R. The management of snake envenomation: evaluation of twenty-one snakebite cases. Ulus. Travma Acil Cerrahi Derg. 13, 307–312 (2007).

    PubMed 

    Google Scholar
     

  • Sharma, L. R., Lal, V. & Simpson, I. D. Snakes of medical significance in India: the first reported case of envenoming by the Levantine viper (Macrovipera lebetina). Wilderness Environ. Med. 19, 195 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Hamdi, M. F., Baccari, S., Daghfous, M. & Tarhouni, L. Upper limb compartment syndrome after an adder bite: a case report. Chin. J. Traumatol. 13, 117–119 (2010).

    PubMed 

    Google Scholar
     

  • Hussain, T. & Jan, R. A. A viper bite. N. Engl. J. Med. 373, 1059–1059 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olcaysu, O. O., Cadirci, K., Altun, A., Durur Karakaya, A. & Bayramlar, H. Unilateral optic neuropathy and acute angle-closure glaucoma following snake envenomation. Case Rep. Ophthalmol. Med. 2015, 1–4 (2015).


    Google Scholar
     

  • Monzavi, S. M. et al. Interspecies variations in clinical envenoming effects of viper snakes evolutionized in a common habitat: a comparative study on Echis carinatus sochureki and Macrovipera lebetina obtusa victims in Iran. Asia Pac. J. Med. Toxicol. https://doi.org/10.22038/apjmt.2019.14328 (2019).

  • Abu Baker, M. A., Al-Saraireh, M., Amr, Z., Amr, S. S. & Warrell, D. A. Snakebites in Jordan: a clinical and epidemiological study. Toxicon 208, 18–30 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abukamar, A. et al. Arabian Levantine viper bite induces thrombocytopenia – a case report. J. Med. Life 15, 867–870 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valenta, J. et al. Fibrinogenolysis in venom-induced consumption coagulopathy after Viperidae snakebites: a pilot study. Toxins 14, 538 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahabi, S., et al. Snakebite envenomation from the large palearctic viper, Macrovipera razii (Squamata: Serpentes; Viperidae), in Fars Province, Southern Iran. J. Trop. Med. 2024, 4207010 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warrell, D. A. in Handbook of Clinical Toxicology of Animal Venoms and Poisons (eds Meier, J. & White, J.) (CRC Press, 1995).

  • Dadpour, B. et al. Snakebite prognostic factors: leading factors of weak therapeutic response following snakebite envenomation. Asia Pac. J. Med. Toxicol. 1, 27–33 (2012).


    Google Scholar
     

  • Corkhill, N. L. An inquiry into snake bite in Iraq. Ind. J. Med. Res. 20, 599–696 (1932).


    Google Scholar
     

  • Efendiev, I. N. in Dzhanelidzevskie Readings (eds Manukovskiy, V. A., Parfenov, V. E., Voznyuk, I. A. & Barsukova, I. M.) (Dzhanelidze Research Institute of Emergency Medicine, 2021).

  • Warrell, D. A. & Williams, D. J. Clinical aspects of snakebite envenoming and its treatment in low-resource settings. Lancet 401, 1382–1398 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed, S. M. et al. Emergency treatment of a snake bite: pearls from literature. J. Emerg. Trauma Shock 1, 97 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Nicola, M. R. et al. A guide to the clinical management of Vipera snakebite in Italy. Toxins 16, 255 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker-Cote, J. & Meggs, W. J. First aid and pre-hospital management of venomous snakebites. Trop. Med. Infect. Dis. 3, 45 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization (WHO). Guidelines for the production, control and regulation of snake antivenom immunoglobulins. https://www.who.int/publications/m/item/snake-antivenom-immunoglobulins-annex-5-trs-no-1004 (2013).

  • Lalloo, D. G. & Theakston, R. D. G. Snake antivenomsJ. Toxicol. Clin. Toxicol. 41, 277–290 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutiérrez, J. M. et al. Impact of regional variation in Bothrops asper snake venom on the design of antivenoms: integrating antivenomics and neutralization approaches. J. Proteome Res. 9, 564–577 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Archundia, I. G. et al. Neutralization of Vipera and Macrovipera venoms by two experimental polyvalent antisera: a study of paraspecificity. Toxicon 57, 1049–1056 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jalali, A., Mohajer, S., Jowkar, Z. & Kazemi, S. M. The need to expand cover of polyvalent snake antivenom in Iran. Toxicon 238, 107585 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Impact Global Health. Snakebite envenoming medicines database. https://www.impactglobalhealth.org/data/snakebite-envenoming-medicines-database (2022).

  • Segura, A., et al. Design, development and preclinical assessment of MENAVip-ICP, a new snake antivenom with potential coverage of species in the Middle East and North Africa regions. Toxicon X 24, 100206 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Numanoglu Cevik, Y., et al. Paraspecific neutralization capacity of polyvalent snake antivenom against Montivipera wagneri venom. Toxicon 249, 108061 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Arredondo, A., Martínez, M., Calderón, A., Saldívar, A. & Soria, R. Preclinical assessment of a new polyvalent antivenom (Inoserp Europe) against several species of the subfamily Viperinae. Toxins 11, 149 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadkhodazadeh, M. et al. Isolation of polyclonal scFv fragments against venomous snakes of Iran and evaluation of its capability in neutralizing the venom. IJPR https://doi.org/10.22037/ijpr.2019.14400.12358, (2020).

  • Eskafi, A. H. et al. Development and characterization of human single chain antibody against Iranian Macrovipera lebetina snake venom. Toxicon 197, 106–113 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamb, T., de Haro, L., Lonati, D., Brvar, M. & Eddleston, M. Antivenom for European Vipera species envenoming. Clin. Toxicol. 55, 557–568 (2017).

    Article 
    CAS 

    Google Scholar
     

  • de Silva, H. A. et al. Low-dose adrenaline, promethazine, and hydrocortisone in the prevention of acute adverse reactions to antivenom following snakebite: a randomised, double-blind, placebo-controlled trial. PLoS Med. 8, e1000435 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakir, S. et al. Screening of active biomolecules from the venom of the Moroccan viper Daboia mauritanica. EC Pharmacol. Toxicol. 7, 144–149 (2019).


    Google Scholar
     

  • Dalhat, M. M., et al. Availability, accessibility and use of antivenom for snakebite envenomation in Africa with proposed strategies to overcome the limitations. Toxicon X 18, 100152 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    More From Forest Beat

    The niche concept in a changing world

    In the spring of 1958, G. Evelyn Hutchinson visited the sanctuary of Santa Rosalia on Mount Pellegrino in Palermo, Sicily. While examining a...
    Biodiversity
    1
    minute

    Thousands of endangered trees preserved for centuries inside Chinese temples

    Religious monuments in China have provided a refuge for ancient trees for thousands of years, including dozens of endangered species and some...
    Biodiversity
    1
    minute

    The Top End’s tropical savannas are a natural wonder – but...

    The Top End of Australia’s Northern Territory contains an extensive, awe-inspiring expanse of tropical savanna landscapes. It includes well-known...
    Biodiversity
    3
    minutes

    Navigating synergies vs. trade-offs between climate change mitigation and biodiversity conservation

    Climate change and biodiversity are among the foremost environmental challenges facing modern society. Although climate change impacts may seem more noticeable and garner...
    Biodiversity
    14
    minutes
    spot_imgspot_img