The contribution of other effective area-based conservation measures (OECMs) to protecting global biodiversity

[ad_1]

  • UN-CBD. Kunming-Montreal Global Biodiversity Framework. (United Nations Convention on Biological Diversity; Fifteenth Meeting of the Conference of the Parties, 2022).

  • Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Brodie, J. F. et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807–812 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirsch, T., Mooney, K. & Cooper, D. Global Biodiversity Outlook 5. (Secretariat of the Convention on Biological Diversity, 2020).

  • Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maini, B., Blythe, J. L., Darling, E. S. & Gurney, G. G. Charting the value and limits of other effective conservation measures (OECMs) for marine conservation: A Delphi study. Mar. Policy 147, 105350 (2023).


    Google Scholar
     

  • Jonas, H. D. et al. Global status and emerging contribution of other effective area-based conservation measures (OECMs) towards the ‘30×30’biodiversity Target 3. Front. Conserv. Sci. 5, 1447434 (2024).


    Google Scholar
     

  • CBD. Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity (CBD) 14/8. Protected areas and other effective area-based conservation measures. (2018).

  • UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). (United Nations Environment Programme – World Conservation Monitoring Centre and International Union for the Conservation of Nature; www.protectedplanet.net (accessed 1 Oct 2023), 2023).

  • Alves-Pinto, H. et al. Opportunities and challenges of other effective area-based conservation measures (OECMs) for biodiversity conservation. Perspect. Ecol. Conserv. 19, 115–120 (2021).


    Google Scholar
     

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PloS one 4 (2009).

  • Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PloS one 6, e22722 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Renwick, A. R. et al. Mapping Indigenous land management for threatened species conservation: An Australian case-study. PloS one 12, e0173876 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101, 1–6 (2019).


    Google Scholar
     

  • Donald, P. F. et al. The prevalence, characteristics and effectiveness of Aichi Target 11′ s “other effective area-based conservation measures”(OECMs) in Key Biodiversity Areas. Conserv. Lett. 12, e12659 (2019).


    Google Scholar
     

  • Kling, M. M. & Ackerly, D. D. Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees. Proc. Natl Acad. Sci. 118, e2017317118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savary, P., Foltête, J. C., Moal, H., Vuidel, G. & Garnier, S. Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol. Ecol. Resour. 21, 1167–1185 (2021).

    PubMed 

    Google Scholar
     

  • Williams, S. H. et al. Incorporating connectivity into conservation planning for the optimal representation of multiple species and ecosystem services. Conserv. Biol. 34, 934–942 (2020).

    PubMed 

    Google Scholar
     

  • Brodie, J. F., Mohd-Azlan, J. & Schnell, J. K. How individual links affect network stability in a large-scale, heterogeneous metacommunity. Ecology 97, 1658–1667 (2016).

    PubMed 

    Google Scholar
     

  • Brodie, J. et al. A well-connected Earth: the science and conservation of organismal movement. Science In Press (2025).

  • Parks, S. A., Holsinger, L. M., Abatzoglou, J. T., Littlefield, C. E. & Zeller, K. A. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts. Glob. Change Biol. 29, 2681–2696 (2023).

    CAS 

    Google Scholar
     

  • Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Watson, J. E. et al. Priorities for protected area expansion so nations can meet their Kunming-Montreal Global Biodiversity Framework commitments. Integr. Conserv. (2023).

  • Giglio, V. J. et al. Large and remote marine protected areas in the South Atlantic Ocean are flawed and raise concerns: Comments on Soares and Lucas (2018). Mar. Policy 96, 13–17 (2018).


    Google Scholar
     

  • Leverington, F., Costa, K. L., Pavese, H., Lisle, A. & Hockings, M. A global analysis of protected area management effectiveness. Environ. Manag. 46, 685–698 (2010).

    ADS 

    Google Scholar
     

  • Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. 110, 4956–4961 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benitez-Lopez, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cook, C. N. Progress developing the concept of other effective area-based conservation measures. Cons. Biol. (2023).

  • IUCN-WCPA. Recognising and Reporting Other Effective Area-Based Conservation Measures. (International Union for the Conservation of Nature (IUCN) – World Congress on Protected Areas (WCPA) Task Force on OECMs, 2019).

  • Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evolution 5, 1499–1509 (2021).


    Google Scholar
     

  • IUCN. A global standard for the identification of Key Biodiversity Areas, version 1.0. First edition. (International Union for the Conservation of Nature, 2016).

  • Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pata, P. R. & Yñiguez, A. T. Spatial planning insights for Philippine coral reef conservation using larval connectivity networks. Front. Mar. Sci. 8, 719691 (2021).


    Google Scholar
     

  • Duncanson, L. et al. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 14, 2908 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jantz, P., Goetz, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Change 4, 138–142 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Curran, M., Hellweg, S. & Beck, J. Is there any empirical support for biodiversity offset policy?. Ecol. Appl. 24, 617–632 (2014).

    PubMed 

    Google Scholar
     

  • Adams, V. M., Setterfield, S. A., Douglas, M. M., Kennard, M. J. & Ferdinands, K. Measuring benefits of protected area management: trends across realms and research gaps for freshwater systems. Philos. Trans. R. Soc. B: Biol. Sci. 370, 20140274 (2015).


    Google Scholar
     

  • Rodrigues, R. R., Lima, R. A., Gandolfi, S. & Nave, A. G. On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol. Conserv. 142, 1242–1251 (2009).


    Google Scholar
     

  • Brodie, J., Post, E. & Laurance, W. F. Climate change and tropical biodiversity: a new focus. Trends Ecol. evolution 27, 145–150 (2012).


    Google Scholar
     

  • Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2020).

    PubMed 

    Google Scholar
     

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanson, J. O. Wdpar: Interface to the world database on protected areas. J. Open Source Softw. 7, 4594 (2022).

    ADS 

    Google Scholar
     

  • Stuart, E. A., King, G., Imai, K. & Ho, D. MatchIt: nonparametric preprocessing for parametric causal inference. Journal of statistical software, (2011).

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2023).

  • GEBCO. The General Bathymetric Chart of the Oceans (GEBCO) 2023 Grid (https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b) {accessed 20 Oct 2023). (GEBCO Compilation Group, 2023).

  • Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12692 (2020).


    Google Scholar
     

  • Theobald, D. M., Keeley, A. T., Laur, A. & Tabor, G. A simple and practical measure of the connectivity of protected area networks: The ProNet metric. Conserv. Sci. Pract. 4, e12823 (2022).


    Google Scholar
     

  • Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Copernicus Service Information. Global land service; https://land.copernicus.eu/en (accessed 1 Aug 2023). (2023).

  • Marx, A. J., Wang, C., Sefair, J. A., Acevedo, M. A. & Fletcher, R. J. Jr. samc: an R package for connectivity modeling with spatial absorbing Markov chains. Ecography 43, 518–527 (2020).

    ADS 

    Google Scholar
     

  • McRae, B. et al. Conserving nature’s stage: mapping omnidirectional connectivity for resilient terrestrial landscapes in the Pacific Northwest. (The Nature Conservancy, 2016).

  • BirdLife International. World Database of Key Biodiversity Areas. (Developed by the KBA Partnership: BirdLife International, International Union for the Conservation of Nature, American Bird Conservancy, Amphibian Survival Alliance, Conservation International, Critical Ecosystem Partnership Fund, Global Environment Facility, Re:wild, NatureServe, Rainforest Trust, Royal Society for the Protection of Birds, Wildlife Conservation Society and World Wildlife Fund. September 2023 version. Available at http://keybiodiversityareas.org/kba-data/request (accessed 25 Oct 2023).

  • Hawkins, B. A. Vol. 39 1–9 (Wiley Online Library, 2012).

  • Hawkins, B. A., Diniz-Filho, J. A. F., Mauricio Bini, L., De Marco, P. & Blackburn, T. M. Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30, 375–384 (2007).

    ADS 

    Google Scholar
     

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. science 342, 850–853 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • FAO. From reference levels to results reporting: REDD+ under the UNFCCC. 2018 update. (Food and Agriculture Organization of the United Nations (FAO), 2018).

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img