Round, F.E., Crawford, R.M. & Mann, D.G. The diatoms. Biology and morphology of the genera. Cambridge: Cambridge University Press. p. 747 (1990).
Gordon, R. & Drum, R. W. The chemical basis for diatom morphogenesis. Int Rev Cytol. 150, 243–372 (1994).
Medlin, L. K., Kooistra, W., Gersonde, R., Sims, P. & Wellbrock, U. Is the origin of diatoms related to the end-Permian mass extinction? Nova Hedwigia 65, 1–11 (1997).
Drebes, G. Sexuality. in The Biology of Diatoms, ed. By D. Werner. Oxford: Blackwell Scientific Publ., 250–283 (1997).
Lewis, W. M. The diatom sex clock and its evolutionary significance. Am Nat. 123, 73–80 (1984).
Geitler, L. Der formwechsel der pennaten diatomeen (kieselalgen). Arch Protistenkd. 78, 1–226 (1932).
Nagai, S., Hori, Y., Manabe, T. & Imai, I. Restoration of cell size by vegetative cell enlargement in Coscinodiscus wailesii (Bacillariophyceae). Phycologia 34, 533–535 (1995).
Karentz, D. & Smayda, T. J. Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959-1980). Mar Ecol Prog Ser. 18, 277–293 (1984).
Nishikawa, T. et al. Nutrient and phytoplankton dynamics in Harima-Nada, eastern Seto Inland Sea, Japan during a 35-year period from 1973 to 2007. Estuar Coasts. 33, 417–27 (2010).
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 281, 237–40 (1998).
Nielsen, L. T., Hallegraeff, G. M., Wright, S. W. & Hansen, P. J. Effects of experimental seawater acidification on an estuarine plankton community. Aquat. Microb. Ecol. 65, 271–285, https://doi.org/10.3354/ame01554 (2012).
Bach, L. T. & Taucher, J. CO2 effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities. Ocean Sci. 15, 1159–1175, https://doi.org/10.5194/os-15-1159-2019 (2019).
Tréguer, P. J. & De La Rocha, C. L. The World Ocean Silica Cycle. Annu. Rev. Mar. Sci. 5, 477–501, https://doi.org/10.1146/annurev-marine-121211-172346 (2013).
Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).
Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).
Ogura, A. et al. Comparative genome and transcriptome analysis of diatom, Skeletonema costatum, reveals evolution of genes for harmful algal bloom. BMC Genomics 19(1), 765 (2018).
Filloramo, G. V., Bruce, A., Curtis, B. A., Emma Blanche, E. & Archibald, J. M. Re-examination of two diatom reference genomes using long-read sequencing. BMC Genomics 22, 379 (2021).
Lieberman-Aiden, E. et al. Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
Zingone, A., Percopo, I., Sims, P. A. & Sarno, D. Diversity in the genus Skeletonema (Bacillariophyceae) I. A reexamination of the type of S. Grevillei sp. nov. J. Phycol. 41, 140–50 (2005).
Sarno, D., Kooistra, W. C. H. F., Medlin, L. K., Percopo, I. & Zingone, A. Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy S. costatum-like species, with the description of four new species. J. Phycol. 41, 151–76 (2005).
Sarno, D., Kooistra, W. C. H. F., Balzano, S., Hargraves, P. E. & Zingone, A. Diversity in the genus Skeletonema (Bacillariophyceae). III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevellei, with the description of Skeletonema ardens sp. nov. J. Phycol. 43, 156–70 (2007).
Guiry, M. D. in Guiry MDG, G.M. AlgaeBase. In: National University of Ireland. Galway: World-wide electronic publication. (2021).
Kokot, M., Dlugosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics 33, 2759–2761 (2017).
Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
Nagai, S., Matsuyama, Y., Oh, S.-J. & Itakura, S. Effect of nutrients and temperature on encystment of the toxic dinoflagellate Alexandrium tamarense (Dinophyceae) isolated from Hiroshima Bay, Japan. Plankton Biol. Ecol. 51, 103–109 (2004).
Kamikawa, R., Hosoi-Tanabe, S., Nagai, S., Itakura, S. & Sako, Y. Development of a quantification assay for the cysts of the toxic dinoflagellate Alexandrium tamarense using real-time polymerase chain reaction. Fisheries Science 71, 985–989 (2005).
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLOS ONE https://doi.org/10.1371/journal.pone.0163962 (2016).
seqtk, Toolkit for processing sequences in FASTA/Q formats. Available from: https://github.com/lh3/seqtk.
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).
Zimin, A. V. et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 787–792 (2017).
Huang, S., Kang, M. & Xu, A. HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics 33, 2577–2579 (2017).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
Jin, J. J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21, 241 (2020).
Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research https://doi.org/10.1093/nar/gkw955 (2016).
Tillich, M. et al. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45, W6–W11 (2017).
RepeatMasker v4.1.2, Toolkit for screening DNA sequences for interspersed repeats and low complexity DNA sequences. Available from: https://www.repeatmasker.org/
RepeatModeler v2.0.3, Toolkit for a de novo transposable element (TE) family identification and modeling package. Available from: GitHub – Dfam-consortium/RepeatModeler: De-Novo Repeat Discovery Tool.
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high through put sequencing data. Bioinformatics 31, 166–169, https://doi.org/10.1093/bioinformatics/btu638 (2015).
Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Research 42(15), e119, https://doi.org/10.1093/nar/gku557 (2014).
Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic gene prediction from RNA-Seq data and protein sequences. Bioinformatics 37(23), 4202–4204, https://doi.org/10.1093/bioinformatics/btab409 (2021).
Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).
Buchfnk, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).
Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 384 (2011).
DNA Data Bank of Japan. https://ddbj.nig.ac.jp/search/entry/sra-study/DRP011640 (2024).
DNA Data Bank of Japan. https://ddbj.nig.ac.jp/search/entry/bioproject/PRJDB17309 (2024).
DNA Data Bank of Japan. https://getentry.ddbj.nig.ac.jp/top-j.html/BAAHPM010000001-BAAHPW010000121 (2025).