The draft genome sequences of the cosmopolitan centric diatom, the genus Skeletonema


  • Round, F.E., Crawford, R.M. & Mann, D.G. The diatoms. Biology and morphology of the genera. Cambridge: Cambridge University Press. p. 747 (1990).

  • Gordon, R. & Drum, R. W. The chemical basis for diatom morphogenesis. Int Rev Cytol. 150, 243–372 (1994).

    CAS 

    Google Scholar
     

  • Medlin, L. K., Kooistra, W., Gersonde, R., Sims, P. & Wellbrock, U. Is the origin of diatoms related to the end-Permian mass extinction? Nova Hedwigia 65, 1–11 (1997).


    Google Scholar
     

  • Drebes, G. Sexuality. in The Biology of Diatoms, ed. By D. Werner. Oxford: Blackwell Scientific Publ., 250–283 (1997).

  • Lewis, W. M. The diatom sex clock and its evolutionary significance. Am Nat. 123, 73–80 (1984).


    Google Scholar
     

  • Geitler, L. Der formwechsel der pennaten diatomeen (kieselalgen). Arch Protistenkd. 78, 1–226 (1932).


    Google Scholar
     

  • Nagai, S., Hori, Y., Manabe, T. & Imai, I. Restoration of cell size by vegetative cell enlargement in Coscinodiscus wailesii (Bacillariophyceae). Phycologia 34, 533–535 (1995).


    Google Scholar
     

  • Karentz, D. & Smayda, T. J. Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959-1980). Mar Ecol Prog Ser. 18, 277–293 (1984).

    ADS 

    Google Scholar
     

  • Nishikawa, T. et al. Nutrient and phytoplankton dynamics in Harima-Nada, eastern Seto Inland Sea, Japan during a 35-year period from 1973 to 2007. Estuar Coasts. 33, 417–27 (2010).

    CAS 

    Google Scholar
     

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 281, 237–40 (1998).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Nielsen, L. T., Hallegraeff, G. M., Wright, S. W. & Hansen, P. J. Effects of experimental seawater acidification on an estuarine plankton community. Aquat. Microb. Ecol. 65, 271–285, https://doi.org/10.3354/ame01554 (2012).

    Article 

    Google Scholar
     

  • Bach, L. T. & Taucher, J. CO2 effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities. Ocean Sci. 15, 1159–1175, https://doi.org/10.5194/os-15-1159-2019 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tréguer, P. J. & De La Rocha, C. L. The World Ocean Silica Cycle. Annu. Rev. Mar. Sci. 5, 477–501, https://doi.org/10.1146/annurev-marine-121211-172346 (2013).

    Article 

    Google Scholar
     

  • Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Ogura, A. et al. Comparative genome and transcriptome analysis of diatom, Skeletonema costatum, reveals evolution of genes for harmful algal bloom. BMC Genomics 19(1), 765 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Filloramo, G. V., Bruce, A., Curtis, B. A., Emma Blanche, E. & Archibald, J. M. Re-examination of two diatom reference genomes using long-read sequencing. BMC Genomics 22, 379 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lieberman-Aiden, E. et al. Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zingone, A., Percopo, I., Sims, P. A. & Sarno, D. Diversity in the genus Skeletonema (Bacillariophyceae) I. A reexamination of the type of S. Grevillei sp. nov. J. Phycol. 41, 140–50 (2005).


    Google Scholar
     

  • Sarno, D., Kooistra, W. C. H. F., Medlin, L. K., Percopo, I. & Zingone, A. Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy S. costatum-like species, with the description of four new species. J. Phycol. 41, 151–76 (2005).


    Google Scholar
     

  • Sarno, D., Kooistra, W. C. H. F., Balzano, S., Hargraves, P. E. & Zingone, A. Diversity in the genus Skeletonema (Bacillariophyceae). III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevellei, with the description of Skeletonema ardens sp. nov. J. Phycol. 43, 156–70 (2007).

    CAS 

    Google Scholar
     

  • Guiry, M. D. in Guiry MDG, G.M. AlgaeBase. In: National University of Ireland. Galway: World-wide electronic publication. (2021).

  • Kokot, M., Dlugosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics 33, 2759–2761 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nagai, S., Matsuyama, Y., Oh, S.-J. & Itakura, S. Effect of nutrients and temperature on encystment of the toxic dinoflagellate Alexandrium tamarense (Dinophyceae) isolated from Hiroshima Bay, Japan. Plankton Biol. Ecol. 51, 103–109 (2004).


    Google Scholar
     

  • Kamikawa, R., Hosoi-Tanabe, S., Nagai, S., Itakura, S. & Sako, Y. Development of a quantification assay for the cysts of the toxic dinoflagellate Alexandrium tamarense using real-time polymerase chain reaction. Fisheries Science 71, 985–989 (2005).


    Google Scholar
     

  • Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLOS ONE https://doi.org/10.1371/journal.pone.0163962 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • seqtk, Toolkit for processing sequences in FASTA/Q formats. Available from: https://github.com/lh3/seqtk.

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).


    Google Scholar
     

  • Zimin, A. V. et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 787–792 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang, S., Kang, M. & Xu, A. HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics 33, 2577–2579 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed 

    Google Scholar
     

  • Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Jin, J. J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21, 241 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research https://doi.org/10.1093/nar/gkw955 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tillich, M. et al. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45, W6–W11 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • RepeatMasker v4.1.2, Toolkit for screening DNA sequences for interspersed repeats and low complexity DNA sequences. Available from: https://www.repeatmasker.org/

  • RepeatModeler v2.0.3, Toolkit for a de novo transposable element (TE) family identification and modeling package. Available from: GitHub – Dfam-consortium/RepeatModeler: De-Novo Repeat Discovery Tool.

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high through put sequencing data. Bioinformatics 31, 166–169, https://doi.org/10.1093/bioinformatics/btu638 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Research 42(15), e119, https://doi.org/10.1093/nar/gku557 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic gene prediction from RNA-Seq data and protein sequences. Bioinformatics 37(23), 4202–4204, https://doi.org/10.1093/bioinformatics/btab409 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).

    PubMed 
    CAS 

    Google Scholar
     

  • Buchfnk, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).


    Google Scholar
     

  • Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 384 (2011).


    Google Scholar
     

  • DNA Data Bank of Japan. https://ddbj.nig.ac.jp/search/entry/sra-study/DRP011640 (2024).

  • DNA Data Bank of Japan. https://ddbj.nig.ac.jp/search/entry/bioproject/PRJDB17309 (2024).

  • DNA Data Bank of Japan. https://getentry.ddbj.nig.ac.jp/top-j.html/BAAHPM010000001-BAAHPW010000121 (2025).



  • Source link

    More From Forest Beat

    Traces of dipnoan fish document the earliest adaptations of vertebrates to...

    Interpretation of the Reptanichnus acutori igen. et isp. novThe newly discovered trackway is a crucial trace fossil for the analysis presented in this...
    Biodiversity
    9
    minutes

    Assessing the implications of habitat transformations on human-large carnivore interactions outside...

    Frank, B., Glikman, J. A. & Marchini, S. Human–Wildlife Interactions: Turning Conflict into Coexistence - Google Books. Cambridge University Press vol. 23 (2019).Nyhus,...
    Biodiversity
    12
    minutes

    Stronger El Niños reduce tropical forest arthropod diversity and function

    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).PubMed  ...
    Biodiversity
    9
    minutes

    Unlocking historical plant interactions in herbarium collections

    Davis, C. C. The herbarium of the future. Trends Ecol. Evol. 38, 412–423 (2023). ...
    Biodiversity
    24
    minutes
    spot_imgspot_img