The ecological benefits of more room for rivers


  • Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tonkin, J. D. et al. Prepare river ecosystems for an uncertain future. Nature 570, 301–303 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöschl et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Blöschl et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Intergovernmental Panel on Climate Change (IPCC). Technical Summary. In Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 37–118 (Cambridge Univ. Press, 2023).

  • Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).

    Article 

    Google Scholar
     

  • Milly, P. C. D., Wetherald, R. T., Dunne, K. A. & Delworth, T. L. Increasing risk of great floods in a changing climate. Nature 415, 514–517 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Death, R. G., Fuller, I. C. & Macklin, M. G. Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology. Freshw. Biol. 60, 2477–2496 (2015).

    Article 

    Google Scholar
     

  • Dryden, R., Anand, M., Lehner, B. & Fluet-Chouinard, E. Do we prioritize floodplains for development and farming? Mapping global dependence and exposure to inundation. Glob. Environ. Change 71, 102370 (2021).

    Article 

    Google Scholar
     

  • Rhoads, B. L. in River Dynamics: Geomorphology to Support Management 343–368 (Cambridge Univ. Press, 2020).

  • Han, Y. et al. The growth mode of built-up land in floodplains and its impacts on flood vulnerability. Sci. Total Environ. 700, 134462 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knighton, D. Fluvial Forms & Processes: A New Perspective (Arnold, 1998).

  • Kline, M. Giving our rivers room to move: new strategy and contribution to protecting Vermont’s communities and ensuring clean water. Vt. J. Environ. Law 17, 733–765 (2016).


    Google Scholar
     

  • Lane, S. N., Tayefi, V., Reid, S. C., Yu, D. & Hardy, R. J. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surf. Process. Landf. 32, 429–446 (2007).

    Article 

    Google Scholar
     

  • Biron, P. M. et al. Freedom space for rivers: a sustainable management approach to enhance river resilience. Environ. Manage. 54, 1056–1073 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Evans, E. et al. Future flood risk management in the UK. Proc. Inst. Civ. Eng. Water Manag. 159, 53–61 (2006).

    Article 

    Google Scholar
     

  • Rijke, J., Van Herk, S., Zevenbergen, C. & Ashley, R. Room for the River: delivering integrated river basin management in the Netherlands. Int. J. River Basin Manag. 10, 369–382 (2012).

    Article 

    Google Scholar
     

  • Höckendorff, S. et al. Characterizing fish responses to a river restoration over 21 years based on species’ traits: fish responses to river restoration. Conserv. Biol. 31, 1098–1108 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • van Alphen, S. in Adaptive Strategies for Water Heritage: Past, Present and Future (ed. Hein, C.) 309–323 (Springer, 2020).

  • Klijn, F., De Bruin, D., De Hoog, M. C., Jansen, S. & Sijmons, D. F. Design quality of room-for-the-river measures in the Netherlands: role and assessment of the quality team (Q-team). Int. J. River Basin Manag. 11, 287–299 (2013).

    Article 

    Google Scholar
     

  • Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).

    Article 

    Google Scholar
     

  • Ward, J. V., Tockner, K., Arscott, D. B. & Claret, C. Riverine landscape diversity. Freshw. Biol. 47, 517–539 (2002).

    Article 

    Google Scholar
     

  • Poff, N. L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 6, 25–34 (2016).

    Article 

    Google Scholar
     

  • Lynch, A. J. et al. People need freshwater biodiversity. WIREs Water 10, e1633 (2023).

    Article 

    Google Scholar
     

  • WWF. Living Planet Report 2022 – Building a Nature Positive Society (WWF, 2022).


    Google Scholar
     

  • Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Van Rees, C. B. et al. An interdisciplinary overview of levee setback benefits: supporting spatial planning and implementation of riverine nature‐based solutions. WIREs Water 11, e1750 (2024).

    Article 

    Google Scholar
     

  • Knox, R. L., Wohl, E. E. & Morrison, R. R. Levees don’t protect, they disconnect: a critical review of how artificial levees impact floodplain functions. Sci. Total Environ. 837, 155773 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dierauer, J., Pinter, N. & Remo, J. W. F. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA. J. Hydrol. 450–451, 1–8 (2012).

    Article 

    Google Scholar
     

  • Heine, R. A. & Pinter, N. Levee effects upon flood levels: an empirical assessment. Hydrol. Process. 26, 3225–3240 (2012).

    Article 

    Google Scholar
     

  • Curran, J. C., Dahl, T. A., Corum, Z. P. & Jones, K. E. Geomorphic evolution of a levee setback in a gravel-sand channel in Washington State. J. Hydraul. Eng. 151, 05024003 (2025).

    Article 

    Google Scholar
     

  • Cluer, B. & Thorne, C. A stream evolution model integrating habitat and ecosystem benefits. River Res. Appl. 30, 135–154 (2014).

    Article 

    Google Scholar
     

  • Graf, W. L. Damage control: restoring the physical integrity of America’s rivers. Ann. Assoc. Am. Geogr. 91, 1–27 (2001).

    Article 

    Google Scholar
     

  • McIntosh, A. R., Greig, H. S., Warburton, H. J., Tonkin, J. D. & Febria, C. M. Ecosystem-size relationships of river populations and communities. Trends Ecol. Evol. 39, 571–584 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Opperman, J. J., Luster, R., McKenney, B. A., Roberts, M. & Meadows, A. W. Ecologically functional floodplains: connectivity, flow regime and scale. J. Am. Water Resour. Assoc. 46, 211–226 (2010).

    Article 

    Google Scholar
     

  • Van Looy, K. et al. The three Rs of river ecosystem resilience: resources, recruitment and refugia. River Res. Appl. 35, 107–120 (2019).

    Article 

    Google Scholar
     

  • Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change: conserving Nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Langbein, W. B. & Leopold, L. B. Quasi-equilibrium states in channel morphology. Am. J. Sci. 262, 782–794 (1964).

    Article 

    Google Scholar
     

  • Wymore, A. S., Ward, A. S., Wohl, E. & Harvey, J. W. Viewing river corridors through the lens of critical zone science. Front. Water 5, 1147561 (2023).

    Article 

    Google Scholar
     

  • Castro, J. M. & Thorne, C. R. The stream evolution triangle: integrating geology, hydrology and biology. River Res. Appl. 35, 315–326 (2019).

    Article 

    Google Scholar
     

  • Hauer, C., Mandlburger, G. & Habersack, H. Hydraulically related hydro-morphological units: description based on a new conceptual mesohabitat evaluation model (MEM) using LiDAR data as geometric input. River Res. Appl. 25, 29–47 (2009).

    Article 

    Google Scholar
     

  • Clilverd, H. M., Thompson, J. R., Heppell, C. M., Sayer, C. D. & Axmacher, J. C. Coupled hydrological/hydraulic modelling of river restoration impacts and floodplain hydrodynamics: modelling of river restoration impacts. River Res. Appl. 32, 1927–1948 (2016).

    Article 

    Google Scholar
     

  • Wohl, E. et al. The natural sediment regime in rivers: broadening the foundation for ecosystem management. BioScience 65, 358–371 (2015).

    Article 

    Google Scholar
     

  • Davis, N. G., Mathers, K. L., Hodson, R. & Matthaei, C. D. Monthly sampling reveals seasonal fine sediment fluctuations and riverine invertebrate community responses. Sci. Total Environ. 911, 168750 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jennings, J. C., Bellmore, J. R., Armstrong, J. B. & Wisseman, R. W. Effects of process‐based floodplain restoration on aquatic macroinvertebrate production and community structure. River Res. Appl. 39, 1709–1723 (2023).

    Article 

    Google Scholar
     

  • Bellmore, J. R., Baxter, C. V., Martens, K. & Connolly, P. J. The floodplain food web mosaic: a study of its importance to salmon and steelhead with implications for their recovery. Ecol. Appl. 23, 189–207 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106, 110–127 (1989).


    Google Scholar
     

  • Williams, R. D. et al. Let the river erode! Enabling lateral migration increases geomorphic unit diversity. Sci. Total Environ. 715, 136817 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).

    Article 

    Google Scholar
     

  • DeBoer, J. A., Thoms, M. C., Delong, M. D., Parsons, M. E. & Casper, A. F. Heterogeneity of ecosystem function in an ‘Anthropocene’ river system. Anthropocene 31, 100252 (2020).

    Article 

    Google Scholar
     

  • Maasri, A. et al. Variation in macroinvertebrate community structure of functional process zones along the river continuum: new elements for the interpretation of the river ecosystem synthesis. River Res. Appl. 37, 665–674 (2021).

    Article 

    Google Scholar
     

  • Wohl, E., Lininger, K. B. & Scott, D. N. River beads as a conceptual framework for building carbon storage and resilience to extreme climate events into river management. Biogeochemistry 141, 365–383 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tockner, K. & Stanford, J. A. Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330 (2002).

    Article 

    Google Scholar
     

  • Bellmore, J. R. & Baxter, C. V. Effects of geomorphic process domains on river ecosystems: a comparison of floodplain and confined valley segments. River Res. Appl. 30, 617–630 (2014).

    Article 

    Google Scholar
     

  • Robinson, C. T., Tockner, K. & Ward, J. V. The fauna of dynamic riverine landscapes: fauna of riverine landscapes. Freshw. Biol. 47, 661–677 (2002).

    Article 

    Google Scholar
     

  • Armstrong, J. D., Kemp, P. S., Kennedy, G. J. A., Ladle, M. & Milner, N. J. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fish. Res. 62, 143–170 (2003).

    Article 

    Google Scholar
     

  • Ward, J. V. Riverine landscapes: biodiversity patterns, disturbance regimes and aquatic conservation. Biol. Conserv. 83, 269–278 (1998).

    Article 

    Google Scholar
     

  • Gray, D., Scarsbrook, M. R. & Harding, J. S. Spatial biodiversity patterns in a large New Zealand braided river. N. Z. J. Mar. Freshw. Res. 40, 631–642 (2006).

    Article 

    Google Scholar
     

  • Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M. & Stoffel, M. Factors controlling large-wood transport in a mountain river. Geomorphology 272, 21–31 (2016).

    Article 

    Google Scholar
     

  • Wyżga, B., Zawiejska, J., Mikuś, P. & Kaczka, R. J. Contrasting patterns of wood storage in mountain watercourses narrower and wider than the height of riparian trees. Geomorphology 228, 275–285 (2015).

    Article 

    Google Scholar
     

  • Wohl, E., Dwire, K., Sutfin, N., Polvi, L. & Bazan, R. Mechanisms of carbon storage in mountainous headwater rivers. Nat. Commun. 3, 1263 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Guiney, M. R. & Lininger, K. B. Disturbance and valley confinement: controls on floodplain large wood and organic matter jam deposition in the Colorado Front Range, USA. Earth Surf. Process. Landf. 47, 1371–1389 (2022).

    Article 

    Google Scholar
     

  • Hauer, F. R. et al. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Sci. Adv. 2, e1600026 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wohl, E. et al. Rediscovering, reevaluating and restoring lost river-wetland corridors. Front. Earth Sci. 9, 653623 (2021).

    Article 

    Google Scholar
     

  • Hu, S., Niu, Z., Chen, Y., Li, L. & Zhang, H. Global wetlands: potential distribution, wetland loss and status. Sci. Total Environ. 586, 319–327 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steiger, J., Tabacchi, E., Dufour, S., Corenblit, D. & Peiry, J.-L. Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Res. Appl. 21, 719–737 (2005).

    Article 

    Google Scholar
     

  • Datry, T., Corti, R., Belletti, B. & Piégay, H. Ground-dwelling arthropod communities across braided river landscape mosaics: a Mediterranean perspective. Freshw. Biol. 59, 1308–1322 (2014).

    Article 

    Google Scholar
     

  • Klaar, M. J., Maddock, I. & Milner, A. M. The development of hydraulic and geomorphic complexity in recently formed streams in Glacier Bay National Park, Alaska. River Res. Appl. 25, 1331–1338 (2009).

    Article 

    Google Scholar
     

  • Wyrick, J. R. & Pasternack, G. B. Geospatial organization of fluvial landforms in a gravel-cobble river: beyond the riffle-pool couplet. Geomorphology 213, 48–65 (2014).

    Article 

    Google Scholar
     

  • Arscott, D. B., Tockner, K., van der Nat, D. & Ward, J. V. Aquatic habitat dynamics along a braided alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems 5, 0802–0814 (2002).

    Article 

    Google Scholar
     

  • Richards, K., Brasington, J. & Hughes, F. Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshw. Biol. 47, 559–579 (2002).

    Article 

    Google Scholar
     

  • Malard, F., Uehlinger, U., Zah, R. & Tockner, K. Flood-pulse and riverscape dynamics in a braided glacial river. Ecology 87, 704–716 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Van Der Nat, D., Tockner, K., Edwards, P. J., Ward, J. V. & Gurnell, A. M. Habitat change in braided flood plains (Tagliamento, NE-Italy). Freshw. Biol. 48, 1799–1812 (2003).

    Article 

    Google Scholar
     

  • Whited, D. C. et al. Climate, hydrologic disturbance and succession: drivers of floodplain pattern. Ecology 88, 940–953 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Stanford, J. A., Lorang, M. S. & Hauer, F. R. The shifting habitat mosaic of river ecosystems. SIL Proc. 1922–2010 29, 123–136 (2005).

    Article 

    Google Scholar
     

  • Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30, 492–507 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Palmer, M. & Ruhi, A. Linkages between flow regime, biota and ecosystem processes: implications for river restoration. Science 365, eaaw2087 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tonkin, J. D. et al. Designing flow regimes to support entire river ecosystems. Front. Ecol. Environ. 19, 326–333 (2021).

    Article 

    Google Scholar
     

  • McMullen, L. E., De Leenheer, P., Tonkin, J. D. & Lytle, D. A. High mortality and enhanced recovery: modelling the countervailing effects of disturbance on population dynamics. Ecol. Lett. 20, 1566–1575 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lytle, D. A., Bogan, M. T. & Finn, D. S. Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proc. R. Soc. B Biol. Sci. 275, 453–462 (2008).

    Article 

    Google Scholar
     

  • Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Datry, T. et al. Causes, responses and implications of anthropogenic versus natural flow intermittence in river networks. BioScience 73, 9–22 (2023).

    Article 

    Google Scholar
     

  • Mims, M. C. & Olden, J. D. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93, 35–45 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Tonkin, J. D., Bogan, M. T., Bonada, N., Rios‐Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bogan, M. T. & Lytle, D. A. Seasonal flow variation allows ‘time‐sharing’ by disparate aquatic insect communities in montane desert streams. Freshw. Biol. 52, 290–304 (2007).

    Article 

    Google Scholar
     

  • Bonada, N., Rieradevall, M., Prat, N. & Resh, V. H. Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. J. North Am. Benthol. Soc. 25, 32–43 (2006).

    Article 

    Google Scholar
     

  • Riebe, C. S., Sklar, L. S., Overstreet, B. T. & Wooster, J. K. Optimal reproduction in salmon spawning substrates linked to grain size and fish length. Water Resour. Res. 50, 898–918 (2014).

    Article 

    Google Scholar
     

  • Kemp, P., Sear, D., Collins, A., Naden, P. & Jones, I. The impacts of fine sediment on riverine fish. Hydrol. Process. 25, 1800–1821 (2011).

    Article 

    Google Scholar
     

  • Rossi, G. J. et al. Foodscapes for salmon and other mobile consumers in river networks. BioScience 74, 586–600 (2024).

    Article 

    Google Scholar
     

  • Townsend, C. R. The patch dynamics concept of stream community ecology. J. North Am. Benthol. Soc. 8, 36–50 (1989).

    Article 

    Google Scholar
     

  • Meitzen, K. M. Lateral channel migration effects on riparian forest structure and composition, Congaree River, South Carolina, USA. Wetlands 29, 465–475 (2009).

    Article 

    Google Scholar
     

  • Tockner, K., Malard, F. & Ward, J. V. An extension of the flood pulse concept. Hydrol. Process. 14, 2861–2883 (2000).

    Article 

    Google Scholar
     

  • Gurnell, A. Plants as river system engineers. Earth Surf. Process. Landf. 39, 4–25 (2014).

    Article 

    Google Scholar
     

  • Stecca, G., Hicks, D. M., Measures, R. & Henderson, R. Numerical modeling prediction of vegetation trajectories under different flow regimes in New Zealand braided rivers. J. Geophys. Res. Earth Surf. 128,1–23 (2023).

    Article 

    Google Scholar
     

  • Bertoldi, W., Drake, N. A. & Gurnell, A. M. Interactions between river flows and colonizing vegetation on a braided river: exploring spatial and temporal dynamics in riparian vegetation cover using satellite data. Earth Surf. Process. Landf. 36, 1474–1486 (2011).

    Article 

    Google Scholar
     

  • van Oorschot, M., Kleinhans, M., Geerling, G. & Middelkoop, H. Distinct patterns of interaction between vegetation and morphodynamics. Earth Surf. Process. Landf. 41, 791–808 (2016).

    Article 

    Google Scholar
     

  • Corenblit, D., Tabacchi, E., Steiger, J. & Gurnell, A. M. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci. Rev. 84, 56–86 (2007).

    Article 

    Google Scholar
     

  • Caruso, B. S., Edmondson, L. & Pithie, C. Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand. Environ. Manage. 52, 1–18 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Harris, H. A. L., Tonkin, J. D. & McIntosh, A. R. in Resilience and Riverine Landscapes 157–175 (Elsevier, 2024).

  • Winemiller, K. O., Flecker, A. S. & Hoeinghaus, D. J. Patch dynamics and environmental heterogeneity in lotic ecosystems. J. North Am. Benthol. Soc. 29, 84–99 (2010).

    Article 

    Google Scholar
     

  • Ward, J. V. The four-dimensional nature of lotic ecosystems. J. North Am. Benthol. Soc. 8, 2–8 (1989).

    Article 

    Google Scholar
     

  • Thorp, J. H., Thoms, M. C. & Delong, M. D. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22, 123–147 (2006).

    Article 

    Google Scholar
     

  • Patrick, C. J. et al. The application of metacommunity theory to the management of riverine ecosystems. WIREs Water 8, e1557 (2021).

    Article 

    Google Scholar
     

  • Fernandes, C. C. Lateral migration of fishes in Amazon floodplains. Ecol. Freshw. Fish 6, 36–44 (1997).

    Article 

    Google Scholar
     

  • Li, Z. et al. Seasonal variation in the metacommunity structure of benthic macroinvertebrates in a large river-connected floodplain lake. Ecol. Indic. 136, 108662 (2022).

    Article 

    Google Scholar
     

  • Seliger, C. & Zeiringer, B. in Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future (eds Schmutz, S. & Sendzimir, J.) 171–186 (Springer, 2018).

  • Stanford, J. A. & Ward, J. V. The hyporheic habitat of river ecosystems. Nature 335, 64–66 (1988).

    Article 

    Google Scholar
     

  • Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 29, 630–639 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cleveland, C. C., Neff, J. C., Townsend, A. R. & Hood, E. Composition, dynamics and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7, 175–285 (2004).

  • Langhans, S. D., Tiegs, S. D., Gessner, M. O. & Tockner, K. Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquat. Sci. 70, 337–346 (2008).

    Article 

    Google Scholar
     

  • Wohl, E. An integrative conceptualization of floodplain storage. Rev. Geophys. 59, e2020RG000724 (2021).

    Article 

    Google Scholar
     

  • Datry, T., Larned, S. T. & Tockner, K. Intermittent rivers: a challenge for freshwater ecology. BioScience 64, 229–235 (2014).

    Article 

    Google Scholar
     

  • Von Schiller, D. et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Glob. Biogeochem. Cycles 33, 1251–1263 (2019).

    Article 

    Google Scholar
     

  • Price, A. N. et al. Biogeochemical and community ecology responses to the wetting of non-perennial streams. Nat. Water 2, 815–826 (2024).

    Article 

    Google Scholar
     

  • Larsen, S. et al. Flooding and hydrologic connectivity modulate community assembly in a dynamic river-floodplain ecosystem. PLoS ONE 14, e0213227 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moran, P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291 (1953).

    Article 

    Google Scholar
     

  • Langhans, S. D., Tiegs, S. D., Uehlinger, U. & Tockner, K. Environmental heterogeneity controls organic-matter dynamics in river-floodplain ecosystems. Pol. J. Ecol. 54, 675–680 (2006).


    Google Scholar
     

  • Thomaz, S. M., Bini, L. M. & Bozelli, R. L. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579, 1–13 (2007).

    Article 

    Google Scholar
     

  • Holgerson, M. A. et al. Floodplains provide important amphibian habitat despite multiple ecological threats. Ecosphere 10, e02853 (2019).

    Article 

    Google Scholar
     

  • Paetzold, A., Yoshimura, C. & Tockner, K. Riparian arthropod responses to flow regulation and river channelization. J. Appl. Ecol. 45, 894–903 (2008).

    Article 

    Google Scholar
     

  • Kennedy, T. L. & Turner, T. F. River channelization reduces nutrient flow and macroinvertebrate diversity at the aquatic terrestrial transition zone. Ecosphere 2, 1–13 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tiegs, S. D. et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav0486 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baxter, C. V., Fausch, K. D. & Carl Saunders, W. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones: prey subsidies link stream and riparian food webs. Freshw. Biol. 50, 201–220 (2005).

    Article 

    Google Scholar
     

  • Nakano, S., Miyasaka, H. & Kuhara, N. Terrestrial–aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80, 2435–2441 (1999).


    Google Scholar
     

  • Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Bellmore, J. R., Baxter, C. V. & Connolly, P. J. Spatial complexity reduces interaction strengths in the meta‐food web of a river floodplain mosaic. Ecology 96, 274–283 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Jacquet, C., Carraro, L. & Altermatt, F. Meta‐ecosystem dynamics drive the spatial distribution of functional groups in river networks. Oikos 2022, e09372 (2022).

    Article 

    Google Scholar
     

  • Paetzold, A., Schubert, C. J. & Tockner, K. Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic Insects. Ecosystems 8, 748–759 (2005).

    Article 

    Google Scholar
     

  • Tockner, K., Paetzold, A., Karaus, U., Claret, C. & Zettel, J. in Braided Rivers (eds Sambrook Smith, G. H. et al.) 339–359 (Blackwell, 2006).

  • Trapp, J. R., Beier, P., Mack, C., Parsons, D. R. & Paquet, P. C. Wolf, Canis lupus, den site selection in the Rocky Mountains. Can. Field Nat. 122, 49–56 (2008).

    Article 

    Google Scholar
     

  • Pierce, R. Regional patterns of migration in the Banded Dotterel (Charadrius bicintus). Notornis 46, 101–122 (1999).


    Google Scholar
     

  • Caruso, B. S. Project River Recovery: restoration of braided gravel-bed river habitat in New Zealand’s high country. Environ. Manage. 37, 840–861 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Dudgeon, D. Conservation of freshwater biodiversity in Oriental Asia: constraints, conflicts and challenges to science and sustainability. Limnology 1, 237–243 (2000).

    Article 

    Google Scholar
     

  • Tonkin, J. D. in Encyclopedia of Inland Waters (ed. Poff, L. N.) 653–664 (Elsevier, 2022).

  • Poff, N. L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 63, 1011–1021 (2018).

    Article 

    Google Scholar
     

  • Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Ellis, P. W. et al. The principles of natural climate solutions. Nat. Commun. 15, 547 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, D. N. & Wohl, E. Geomorphology and climate interact to control organic carbon stock and age in mountain river valley bottoms. Earth Surf. Process. Landf. 45, 1911–1925 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sutfin, N. A., Wohl, E., Fegel, T., Day, N. & Lynch, L. Logjams and channel morphology influence sediment storage, transformation of organic matter, and carbon storage within mountain stream corridors. Water Resour. Res. 57, e2020WR028046 (2021).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img