The ecological benefits of more room for rivers


  • Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tonkin, J. D. et al. Prepare river ecosystems for an uncertain future. Nature 570, 301–303 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöschl et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Blöschl et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Intergovernmental Panel on Climate Change (IPCC). Technical Summary. In Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 37–118 (Cambridge Univ. Press, 2023).

  • Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).

    Article 

    Google Scholar
     

  • Milly, P. C. D., Wetherald, R. T., Dunne, K. A. & Delworth, T. L. Increasing risk of great floods in a changing climate. Nature 415, 514–517 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Death, R. G., Fuller, I. C. & Macklin, M. G. Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology. Freshw. Biol. 60, 2477–2496 (2015).

    Article 

    Google Scholar
     

  • Dryden, R., Anand, M., Lehner, B. & Fluet-Chouinard, E. Do we prioritize floodplains for development and farming? Mapping global dependence and exposure to inundation. Glob. Environ. Change 71, 102370 (2021).

    Article 

    Google Scholar
     

  • Rhoads, B. L. in River Dynamics: Geomorphology to Support Management 343–368 (Cambridge Univ. Press, 2020).

  • Han, Y. et al. The growth mode of built-up land in floodplains and its impacts on flood vulnerability. Sci. Total Environ. 700, 134462 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knighton, D. Fluvial Forms & Processes: A New Perspective (Arnold, 1998).

  • Kline, M. Giving our rivers room to move: new strategy and contribution to protecting Vermont’s communities and ensuring clean water. Vt. J. Environ. Law 17, 733–765 (2016).


    Google Scholar
     

  • Lane, S. N., Tayefi, V., Reid, S. C., Yu, D. & Hardy, R. J. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surf. Process. Landf. 32, 429–446 (2007).

    Article 

    Google Scholar
     

  • Biron, P. M. et al. Freedom space for rivers: a sustainable management approach to enhance river resilience. Environ. Manage. 54, 1056–1073 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Evans, E. et al. Future flood risk management in the UK. Proc. Inst. Civ. Eng. Water Manag. 159, 53–61 (2006).

    Article 

    Google Scholar
     

  • Rijke, J., Van Herk, S., Zevenbergen, C. & Ashley, R. Room for the River: delivering integrated river basin management in the Netherlands. Int. J. River Basin Manag. 10, 369–382 (2012).

    Article 

    Google Scholar
     

  • Höckendorff, S. et al. Characterizing fish responses to a river restoration over 21 years based on species’ traits: fish responses to river restoration. Conserv. Biol. 31, 1098–1108 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • van Alphen, S. in Adaptive Strategies for Water Heritage: Past, Present and Future (ed. Hein, C.) 309–323 (Springer, 2020).

  • Klijn, F., De Bruin, D., De Hoog, M. C., Jansen, S. & Sijmons, D. F. Design quality of room-for-the-river measures in the Netherlands: role and assessment of the quality team (Q-team). Int. J. River Basin Manag. 11, 287–299 (2013).

    Article 

    Google Scholar
     

  • Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).

    Article 

    Google Scholar
     

  • Ward, J. V., Tockner, K., Arscott, D. B. & Claret, C. Riverine landscape diversity. Freshw. Biol. 47, 517–539 (2002).

    Article 

    Google Scholar
     

  • Poff, N. L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 6, 25–34 (2016).

    Article 

    Google Scholar
     

  • Lynch, A. J. et al. People need freshwater biodiversity. WIREs Water 10, e1633 (2023).

    Article 

    Google Scholar
     

  • WWF. Living Planet Report 2022 – Building a Nature Positive Society (WWF, 2022).


    Google Scholar
     

  • Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Van Rees, C. B. et al. An interdisciplinary overview of levee setback benefits: supporting spatial planning and implementation of riverine nature‐based solutions. WIREs Water 11, e1750 (2024).

    Article 

    Google Scholar
     

  • Knox, R. L., Wohl, E. E. & Morrison, R. R. Levees don’t protect, they disconnect: a critical review of how artificial levees impact floodplain functions. Sci. Total Environ. 837, 155773 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dierauer, J., Pinter, N. & Remo, J. W. F. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA. J. Hydrol. 450–451, 1–8 (2012).

    Article 

    Google Scholar
     

  • Heine, R. A. & Pinter, N. Levee effects upon flood levels: an empirical assessment. Hydrol. Process. 26, 3225–3240 (2012).

    Article 

    Google Scholar
     

  • Curran, J. C., Dahl, T. A., Corum, Z. P. & Jones, K. E. Geomorphic evolution of a levee setback in a gravel-sand channel in Washington State. J. Hydraul. Eng. 151, 05024003 (2025).

    Article 

    Google Scholar
     

  • Cluer, B. & Thorne, C. A stream evolution model integrating habitat and ecosystem benefits. River Res. Appl. 30, 135–154 (2014).

    Article 

    Google Scholar
     

  • Graf, W. L. Damage control: restoring the physical integrity of America’s rivers. Ann. Assoc. Am. Geogr. 91, 1–27 (2001).

    Article 

    Google Scholar
     

  • McIntosh, A. R., Greig, H. S., Warburton, H. J., Tonkin, J. D. & Febria, C. M. Ecosystem-size relationships of river populations and communities. Trends Ecol. Evol. 39, 571–584 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Opperman, J. J., Luster, R., McKenney, B. A., Roberts, M. & Meadows, A. W. Ecologically functional floodplains: connectivity, flow regime and scale. J. Am. Water Resour. Assoc. 46, 211–226 (2010).

    Article 

    Google Scholar
     

  • Van Looy, K. et al. The three Rs of river ecosystem resilience: resources, recruitment and refugia. River Res. Appl. 35, 107–120 (2019).

    Article 

    Google Scholar
     

  • Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change: conserving Nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Langbein, W. B. & Leopold, L. B. Quasi-equilibrium states in channel morphology. Am. J. Sci. 262, 782–794 (1964).

    Article 

    Google Scholar
     

  • Wymore, A. S., Ward, A. S., Wohl, E. & Harvey, J. W. Viewing river corridors through the lens of critical zone science. Front. Water 5, 1147561 (2023).

    Article 

    Google Scholar
     

  • Castro, J. M. & Thorne, C. R. The stream evolution triangle: integrating geology, hydrology and biology. River Res. Appl. 35, 315–326 (2019).

    Article 

    Google Scholar
     

  • Hauer, C., Mandlburger, G. & Habersack, H. Hydraulically related hydro-morphological units: description based on a new conceptual mesohabitat evaluation model (MEM) using LiDAR data as geometric input. River Res. Appl. 25, 29–47 (2009).

    Article 

    Google Scholar
     

  • Clilverd, H. M., Thompson, J. R., Heppell, C. M., Sayer, C. D. & Axmacher, J. C. Coupled hydrological/hydraulic modelling of river restoration impacts and floodplain hydrodynamics: modelling of river restoration impacts. River Res. Appl. 32, 1927–1948 (2016).

    Article 

    Google Scholar
     

  • Wohl, E. et al. The natural sediment regime in rivers: broadening the foundation for ecosystem management. BioScience 65, 358–371 (2015).

    Article 

    Google Scholar
     

  • Davis, N. G., Mathers, K. L., Hodson, R. & Matthaei, C. D. Monthly sampling reveals seasonal fine sediment fluctuations and riverine invertebrate community responses. Sci. Total Environ. 911, 168750 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jennings, J. C., Bellmore, J. R., Armstrong, J. B. & Wisseman, R. W. Effects of process‐based floodplain restoration on aquatic macroinvertebrate production and community structure. River Res. Appl. 39, 1709–1723 (2023).

    Article 

    Google Scholar
     

  • Bellmore, J. R., Baxter, C. V., Martens, K. & Connolly, P. J. The floodplain food web mosaic: a study of its importance to salmon and steelhead with implications for their recovery. Ecol. Appl. 23, 189–207 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106, 110–127 (1989).


    Google Scholar
     

  • Williams, R. D. et al. Let the river erode! Enabling lateral migration increases geomorphic unit diversity. Sci. Total Environ. 715, 136817 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).

    Article 

    Google Scholar
     

  • DeBoer, J. A., Thoms, M. C., Delong, M. D., Parsons, M. E. & Casper, A. F. Heterogeneity of ecosystem function in an ‘Anthropocene’ river system. Anthropocene 31, 100252 (2020).

    Article 

    Google Scholar
     

  • Maasri, A. et al. Variation in macroinvertebrate community structure of functional process zones along the river continuum: new elements for the interpretation of the river ecosystem synthesis. River Res. Appl. 37, 665–674 (2021).

    Article 

    Google Scholar
     

  • Wohl, E., Lininger, K. B. & Scott, D. N. River beads as a conceptual framework for building carbon storage and resilience to extreme climate events into river management. Biogeochemistry 141, 365–383 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tockner, K. & Stanford, J. A. Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330 (2002).

    Article 

    Google Scholar
     

  • Bellmore, J. R. & Baxter, C. V. Effects of geomorphic process domains on river ecosystems: a comparison of floodplain and confined valley segments. River Res. Appl. 30, 617–630 (2014).

    Article 

    Google Scholar
     

  • Robinson, C. T., Tockner, K. & Ward, J. V. The fauna of dynamic riverine landscapes: fauna of riverine landscapes. Freshw. Biol. 47, 661–677 (2002).

    Article 

    Google Scholar
     

  • Armstrong, J. D., Kemp, P. S., Kennedy, G. J. A., Ladle, M. & Milner, N. J. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fish. Res. 62, 143–170 (2003).

    Article 

    Google Scholar
     

  • Ward, J. V. Riverine landscapes: biodiversity patterns, disturbance regimes and aquatic conservation. Biol. Conserv. 83, 269–278 (1998).

    Article 

    Google Scholar
     

  • Gray, D., Scarsbrook, M. R. & Harding, J. S. Spatial biodiversity patterns in a large New Zealand braided river. N. Z. J. Mar. Freshw. Res. 40, 631–642 (2006).

    Article 

    Google Scholar
     

  • Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M. & Stoffel, M. Factors controlling large-wood transport in a mountain river. Geomorphology 272, 21–31 (2016).

    Article 

    Google Scholar
     

  • Wyżga, B., Zawiejska, J., Mikuś, P. & Kaczka, R. J. Contrasting patterns of wood storage in mountain watercourses narrower and wider than the height of riparian trees. Geomorphology 228, 275–285 (2015).

    Article 

    Google Scholar
     

  • Wohl, E., Dwire, K., Sutfin, N., Polvi, L. & Bazan, R. Mechanisms of carbon storage in mountainous headwater rivers. Nat. Commun. 3, 1263 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Guiney, M. R. & Lininger, K. B. Disturbance and valley confinement: controls on floodplain large wood and organic matter jam deposition in the Colorado Front Range, USA. Earth Surf. Process. Landf. 47, 1371–1389 (2022).

    Article 

    Google Scholar
     

  • Hauer, F. R. et al. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Sci. Adv. 2, e1600026 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wohl, E. et al. Rediscovering, reevaluating and restoring lost river-wetland corridors. Front. Earth Sci. 9, 653623 (2021).

    Article 

    Google Scholar
     

  • Hu, S., Niu, Z., Chen, Y., Li, L. & Zhang, H. Global wetlands: potential distribution, wetland loss and status. Sci. Total Environ. 586, 319–327 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steiger, J., Tabacchi, E., Dufour, S., Corenblit, D. & Peiry, J.-L. Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Res. Appl. 21, 719–737 (2005).

    Article 

    Google Scholar
     

  • Datry, T., Corti, R., Belletti, B. & Piégay, H. Ground-dwelling arthropod communities across braided river landscape mosaics: a Mediterranean perspective. Freshw. Biol. 59, 1308–1322 (2014).

    Article 

    Google Scholar
     

  • Klaar, M. J., Maddock, I. & Milner, A. M. The development of hydraulic and geomorphic complexity in recently formed streams in Glacier Bay National Park, Alaska. River Res. Appl. 25, 1331–1338 (2009).

    Article 

    Google Scholar
     

  • Wyrick, J. R. & Pasternack, G. B. Geospatial organization of fluvial landforms in a gravel-cobble river: beyond the riffle-pool couplet. Geomorphology 213, 48–65 (2014).

    Article 

    Google Scholar
     

  • Arscott, D. B., Tockner, K., van der Nat, D. & Ward, J. V. Aquatic habitat dynamics along a braided alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems 5, 0802–0814 (2002).

    Article 

    Google Scholar
     

  • Richards, K., Brasington, J. & Hughes, F. Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshw. Biol. 47, 559–579 (2002).

    Article 

    Google Scholar
     

  • Malard, F., Uehlinger, U., Zah, R. & Tockner, K. Flood-pulse and riverscape dynamics in a braided glacial river. Ecology 87, 704–716 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Van Der Nat, D., Tockner, K., Edwards, P. J., Ward, J. V. & Gurnell, A. M. Habitat change in braided flood plains (Tagliamento, NE-Italy). Freshw. Biol. 48, 1799–1812 (2003).

    Article 

    Google Scholar
     

  • Whited, D. C. et al. Climate, hydrologic disturbance and succession: drivers of floodplain pattern. Ecology 88, 940–953 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Stanford, J. A., Lorang, M. S. & Hauer, F. R. The shifting habitat mosaic of river ecosystems. SIL Proc. 1922–2010 29, 123–136 (2005).

    Article 

    Google Scholar
     

  • Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30, 492–507 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Palmer, M. & Ruhi, A. Linkages between flow regime, biota and ecosystem processes: implications for river restoration. Science 365, eaaw2087 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tonkin, J. D. et al. Designing flow regimes to support entire river ecosystems. Front. Ecol. Environ. 19, 326–333 (2021).

    Article 

    Google Scholar
     

  • McMullen, L. E., De Leenheer, P., Tonkin, J. D. & Lytle, D. A. High mortality and enhanced recovery: modelling the countervailing effects of disturbance on population dynamics. Ecol. Lett. 20, 1566–1575 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lytle, D. A., Bogan, M. T. & Finn, D. S. Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proc. R. Soc. B Biol. Sci. 275, 453–462 (2008).

    Article 

    Google Scholar
     

  • Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Datry, T. et al. Causes, responses and implications of anthropogenic versus natural flow intermittence in river networks. BioScience 73, 9–22 (2023).

    Article 

    Google Scholar
     

  • Mims, M. C. & Olden, J. D. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93, 35–45 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Tonkin, J. D., Bogan, M. T., Bonada, N., Rios‐Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bogan, M. T. & Lytle, D. A. Seasonal flow variation allows ‘time‐sharing’ by disparate aquatic insect communities in montane desert streams. Freshw. Biol. 52, 290–304 (2007).

    Article 

    Google Scholar
     

  • Bonada, N., Rieradevall, M., Prat, N. & Resh, V. H. Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. J. North Am. Benthol. Soc. 25, 32–43 (2006).

    Article 

    Google Scholar
     

  • Riebe, C. S., Sklar, L. S., Overstreet, B. T. & Wooster, J. K. Optimal reproduction in salmon spawning substrates linked to grain size and fish length. Water Resour. Res. 50, 898–918 (2014).

    Article 

    Google Scholar
     

  • Kemp, P., Sear, D., Collins, A., Naden, P. & Jones, I. The impacts of fine sediment on riverine fish. Hydrol. Process. 25, 1800–1821 (2011).

    Article 

    Google Scholar
     

  • Rossi, G. J. et al. Foodscapes for salmon and other mobile consumers in river networks. BioScience 74, 586–600 (2024).

    Article 

    Google Scholar
     

  • Townsend, C. R. The patch dynamics concept of stream community ecology. J. North Am. Benthol. Soc. 8, 36–50 (1989).

    Article 

    Google Scholar
     

  • Meitzen, K. M. Lateral channel migration effects on riparian forest structure and composition, Congaree River, South Carolina, USA. Wetlands 29, 465–475 (2009).

    Article 

    Google Scholar
     

  • Tockner, K., Malard, F. & Ward, J. V. An extension of the flood pulse concept. Hydrol. Process. 14, 2861–2883 (2000).

    Article 

    Google Scholar
     

  • Gurnell, A. Plants as river system engineers. Earth Surf. Process. Landf. 39, 4–25 (2014).

    Article 

    Google Scholar
     

  • Stecca, G., Hicks, D. M., Measures, R. & Henderson, R. Numerical modeling prediction of vegetation trajectories under different flow regimes in New Zealand braided rivers. J. Geophys. Res. Earth Surf. 128,1–23 (2023).

    Article 

    Google Scholar
     

  • Bertoldi, W., Drake, N. A. & Gurnell, A. M. Interactions between river flows and colonizing vegetation on a braided river: exploring spatial and temporal dynamics in riparian vegetation cover using satellite data. Earth Surf. Process. Landf. 36, 1474–1486 (2011).

    Article 

    Google Scholar
     

  • van Oorschot, M., Kleinhans, M., Geerling, G. & Middelkoop, H. Distinct patterns of interaction between vegetation and morphodynamics. Earth Surf. Process. Landf. 41, 791–808 (2016).

    Article 

    Google Scholar
     

  • Corenblit, D., Tabacchi, E., Steiger, J. & Gurnell, A. M. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci. Rev. 84, 56–86 (2007).

    Article 

    Google Scholar
     

  • Caruso, B. S., Edmondson, L. & Pithie, C. Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand. Environ. Manage. 52, 1–18 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Harris, H. A. L., Tonkin, J. D. & McIntosh, A. R. in Resilience and Riverine Landscapes 157–175 (Elsevier, 2024).

  • Winemiller, K. O., Flecker, A. S. & Hoeinghaus, D. J. Patch dynamics and environmental heterogeneity in lotic ecosystems. J. North Am. Benthol. Soc. 29, 84–99 (2010).

    Article 

    Google Scholar
     

  • Ward, J. V. The four-dimensional nature of lotic ecosystems. J. North Am. Benthol. Soc. 8, 2–8 (1989).

    Article 

    Google Scholar
     

  • Thorp, J. H., Thoms, M. C. & Delong, M. D. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22, 123–147 (2006).

    Article 

    Google Scholar
     

  • Patrick, C. J. et al. The application of metacommunity theory to the management of riverine ecosystems. WIREs Water 8, e1557 (2021).

    Article 

    Google Scholar
     

  • Fernandes, C. C. Lateral migration of fishes in Amazon floodplains. Ecol. Freshw. Fish 6, 36–44 (1997).

    Article 

    Google Scholar
     

  • Li, Z. et al. Seasonal variation in the metacommunity structure of benthic macroinvertebrates in a large river-connected floodplain lake. Ecol. Indic. 136, 108662 (2022).

    Article 

    Google Scholar
     

  • Seliger, C. & Zeiringer, B. in Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future (eds Schmutz, S. & Sendzimir, J.) 171–186 (Springer, 2018).

  • Stanford, J. A. & Ward, J. V. The hyporheic habitat of river ecosystems. Nature 335, 64–66 (1988).

    Article 

    Google Scholar
     

  • Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 29, 630–639 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cleveland, C. C., Neff, J. C., Townsend, A. R. & Hood, E. Composition, dynamics and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7, 175–285 (2004).

  • Langhans, S. D., Tiegs, S. D., Gessner, M. O. & Tockner, K. Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquat. Sci. 70, 337–346 (2008).

    Article 

    Google Scholar
     

  • Wohl, E. An integrative conceptualization of floodplain storage. Rev. Geophys. 59, e2020RG000724 (2021).

    Article 

    Google Scholar
     

  • Datry, T., Larned, S. T. & Tockner, K. Intermittent rivers: a challenge for freshwater ecology. BioScience 64, 229–235 (2014).

    Article 

    Google Scholar
     

  • Von Schiller, D. et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Glob. Biogeochem. Cycles 33, 1251–1263 (2019).

    Article 

    Google Scholar
     

  • Price, A. N. et al. Biogeochemical and community ecology responses to the wetting of non-perennial streams. Nat. Water 2, 815–826 (2024).

    Article 

    Google Scholar
     

  • Larsen, S. et al. Flooding and hydrologic connectivity modulate community assembly in a dynamic river-floodplain ecosystem. PLoS ONE 14, e0213227 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moran, P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291 (1953).

    Article 

    Google Scholar
     

  • Langhans, S. D., Tiegs, S. D., Uehlinger, U. & Tockner, K. Environmental heterogeneity controls organic-matter dynamics in river-floodplain ecosystems. Pol. J. Ecol. 54, 675–680 (2006).


    Google Scholar
     

  • Thomaz, S. M., Bini, L. M. & Bozelli, R. L. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579, 1–13 (2007).

    Article 

    Google Scholar
     

  • Holgerson, M. A. et al. Floodplains provide important amphibian habitat despite multiple ecological threats. Ecosphere 10, e02853 (2019).

    Article 

    Google Scholar
     

  • Paetzold, A., Yoshimura, C. & Tockner, K. Riparian arthropod responses to flow regulation and river channelization. J. Appl. Ecol. 45, 894–903 (2008).

    Article 

    Google Scholar
     

  • Kennedy, T. L. & Turner, T. F. River channelization reduces nutrient flow and macroinvertebrate diversity at the aquatic terrestrial transition zone. Ecosphere 2, 1–13 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tiegs, S. D. et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav0486 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baxter, C. V., Fausch, K. D. & Carl Saunders, W. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones: prey subsidies link stream and riparian food webs. Freshw. Biol. 50, 201–220 (2005).

    Article 

    Google Scholar
     

  • Nakano, S., Miyasaka, H. & Kuhara, N. Terrestrial–aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80, 2435–2441 (1999).


    Google Scholar
     

  • Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Bellmore, J. R., Baxter, C. V. & Connolly, P. J. Spatial complexity reduces interaction strengths in the meta‐food web of a river floodplain mosaic. Ecology 96, 274–283 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Jacquet, C., Carraro, L. & Altermatt, F. Meta‐ecosystem dynamics drive the spatial distribution of functional groups in river networks. Oikos 2022, e09372 (2022).

    Article 

    Google Scholar
     

  • Paetzold, A., Schubert, C. J. & Tockner, K. Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic Insects. Ecosystems 8, 748–759 (2005).

    Article 

    Google Scholar
     

  • Tockner, K., Paetzold, A., Karaus, U., Claret, C. & Zettel, J. in Braided Rivers (eds Sambrook Smith, G. H. et al.) 339–359 (Blackwell, 2006).

  • Trapp, J. R., Beier, P., Mack, C., Parsons, D. R. & Paquet, P. C. Wolf, Canis lupus, den site selection in the Rocky Mountains. Can. Field Nat. 122, 49–56 (2008).

    Article 

    Google Scholar
     

  • Pierce, R. Regional patterns of migration in the Banded Dotterel (Charadrius bicintus). Notornis 46, 101–122 (1999).


    Google Scholar
     

  • Caruso, B. S. Project River Recovery: restoration of braided gravel-bed river habitat in New Zealand’s high country. Environ. Manage. 37, 840–861 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Dudgeon, D. Conservation of freshwater biodiversity in Oriental Asia: constraints, conflicts and challenges to science and sustainability. Limnology 1, 237–243 (2000).

    Article 

    Google Scholar
     

  • Tonkin, J. D. in Encyclopedia of Inland Waters (ed. Poff, L. N.) 653–664 (Elsevier, 2022).

  • Poff, N. L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 63, 1011–1021 (2018).

    Article 

    Google Scholar
     

  • Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Ellis, P. W. et al. The principles of natural climate solutions. Nat. Commun. 15, 547 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, D. N. & Wohl, E. Geomorphology and climate interact to control organic carbon stock and age in mountain river valley bottoms. Earth Surf. Process. Landf. 45, 1911–1925 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sutfin, N. A., Wohl, E., Fegel, T., Day, N. & Lynch, L. Logjams and channel morphology influence sediment storage, transformation of organic matter, and carbon storage within mountain stream corridors. Water Resour. Res. 57, e2020WR028046 (2021).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img