The global distribution patterns of alien vertebrate richness in mountains


  • Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Körner, C. Mountain biodiversity, its causes and function. AMBIO: A J. Hum. Environ. 33, 11–17 (2004).

    Article 
    MATH 

    Google Scholar
     

  • Perrigo, A., Hoorn, C. & Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 47, 315–325 (2020).

    Article 

    Google Scholar
     

  • Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711–719 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ansell, S. W. et al. The importance of Anatolian mountains as the cradle of global diversity in Arabis alpina, a key arctic-alpine species. Ann. Bot. 108, 241–252 (2017).

    Article 

    Google Scholar
     

  • Garcia-Rodriguez, A. et al. Amphibian Speciation Rates Support a General Role of Mountains as Biodiversity Pumps. Am. Natural. 198, E68–E79 (2021).

    Article 
    MATH 

    Google Scholar
     

  • García‐Rodríguez, A., Velasco, J. A., Villalobos, F. & Parra‐Olea, G. Effects of evolutionary time, speciation rates and local abiotic conditions on the origin and maintenance of amphibian montane diversity. Glob. Ecol. Biogeogr. 30, 674–684 (2021).

    Article 

    Google Scholar
     

  • López-Pujol, J., Zhang, F.-M., Sun, H.-Q., Ying, T.-S. & Ge, S. Mountains of Southern China as ‘Plant Museums’ and ‘Plant Cradles’: evolutionary and conservation insights. Mt Res Dev. 31, 261–269 (2011).

    Article 

    Google Scholar
     

  • Thornton, J. M. et al. Human populations in the world’s mountains: Spatio-temporal patterns and potential controls. PLoS One 17, e0271466 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Grêt-Regamey, A. & Weibel, B. Global assessment of mountain ecosystem services using earth observation data. Ecosyst. Serv. 46, (2020).

  • Payne, D., Spehn, E. M., Snethlage, M. & Fischer, M. Opportunities for research on mountain biodiversity under global change. Curr. Opin. Environ. Sustain 29, 40–47 (2017).

    Article 

    Google Scholar
     

  • Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century.Science 320, 1768–1771 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Menéndez, R., González-Megías, A., Jay-Robert, P. & Marquéz-Ferrando, R. Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges. Glob. Ecol. Biogeogr. 23, 646–657 (2014).

    Article 

    Google Scholar
     

  • Freeman, B. G., Song, Y., Feeley, K. J. & Zhu, K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol. Lett. 24, 1697–1708 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Turner, M. G., Pearson, S. M., Bolstad, P. & Wear, D. N. Effects of land-cover change on spatial pattern of forest communities in the Southern Appalachian Mountains (USA). Landsc. Ecol. 18, 449–464 (2003).

    Article 

    Google Scholar
     

  • Tasser, E., Tappeiner, U. & Cernusca, A. Ecological effects of land-use changes in the European Alps. in Global change and Mountain Regions: An overview of Current knowledge (ed. Huber, U. M.) 409–420 (2005).

  • Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Seebens, H. et al. Trends and status of alien and invasive alien species. in Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds. Roy, H. E., Pauchard, A., Stoett, P. & R. Truong) (IPBES Secretariat, Bonn, Germany, 2023).

  • Fuentes-Lillo, E. et al. Going up the Andes: patterns and drivers of non-native plant invasions across latitudinal and elevational gradients. Biodivers. Conserv 32, 4199–4219 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Chang 7, 577–580 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Alexander, J. M. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp. Bot. 126, 89–103 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Capinha, C., Essl, F., Porto, M. & Seebens, H. The worldwide networks of spread of recorded alien species. Proc. Natl Acad. Sci. USA 120, e2201911120 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pergl, J. et al. Troubling travellers: Are ecologically harmful alien species associated with particular introduction pathways? NeoBiota 32, 1–20 (2017).

    Article 

    Google Scholar
     

  • Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Rabitsch, W., Essl, F. & Schindler, S. The Rise of Non-native Vectors and Reservoirs of Human Diseases. in IMPACT OF BIOLOGICAL INVASIONS ON ECOSYSTEM SERVICES (eds Vila, M. & Hulme, P. E.)12 263–275 (SPRINGER INTERNATIONAL PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, 2017).

  • Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, (2017).

  • Iseli, E. et al. Rapid upwards spread of non-native plants in mountains across continents. Nat. Ecol. Evol. 7, 405–413 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quan, A. S., Pease, K. M., Breinholt, J. W. & Wayne, R. K. Origins of the invasive red swamp crayfish (Procambarus clarkii) in the Santa Monica Mountains. Aquat. Invasions 9, 211–219 (2014).

    Article 

    Google Scholar
     

  • Miró, A. & Ventura, M. Evidence of exotic trout mediated minnow invasion in Pyrenean high mountain lakes. Biol. Invasions 17, 791–803 (2015).

    Article 

    Google Scholar
     

  • Flesch, E. P. et al. Range expansion and population growth of non-native mountain goats in the Greater Yellowstone Area: Challenges for management. Wildl. Soc. Bull. 40, 241–250 (2016).

    Article 
    MATH 

    Google Scholar
     

  • López, B. C., Pino, J. & López, A. Explaining the successful introduction of the alpine marmot in the Pyrenees. Biol. Invasions 12, 3205–3217 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Joshi, S., Shrestha, B. B., Shrestha, L., Rashid, I. & Adkins, S. Plant Invasions in Mountains. in Global Plant Invasions (eds. Clements, D. R., Upadhyaya, M. K., Joshi, S. & Shrestha, A.) 279–300 (2022).

  • Bellard, C., Rysman, J. F., Leroy, B., Claud, C. & Mace, G. M. A global picture of biological invasion threat on islands. Nat. Ecol. Evol. 1, 1862–1869 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bacher, S. et al. Impacts of biological invasions on nature, nature’s contributions to people, and good quality of life. in Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (eds Roy, H. et al.) (IPBES Secretariat, Bonn, Germany, 2023).

  • Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, (2015).

  • Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Amano, T. et al. Tapping into non-English-language science for the conservation of global biodiversity. PLoS Biol. 19, e3001296 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Einoder, L. D. et al. Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods. PLoS One 13, e0206373 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

  • Bellard, C., Leroy, B., Thuiller, W., Rysman, J. F. & Courchamp, F. Major drivers of invasion risks throughout the world. Ecosphere 7, e01241 (2016).

  • Lockwood, J. L. et al. When pets become pests: the role of the exotic pet trade in producing invasive vertebrate animals. Front. Ecol. Environ. 17, 323–330 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Capinha, C. et al. Diversity, biogeography and the global flows of alien amphibians and reptiles. Divers Distrib. 23, 1313–1322 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Muñoz-Mas, R. et al. Two centuries of spatial and temporal dynamics of freshwater fish introductions. Glob. Ecol. Biogeogr. 32, 1632–1644 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Reino, L. et al. Networks of global bird invasion altered by regional trade ban. Science 3, 1–8 (2017).

    MATH 

    Google Scholar
     

  • Scheffers, B. R., Oliveira, B. F., Lamb, I. & Edwards, D. P. Global wildlife trade across the tree of life. Science 366, 71–76 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sinclair, J. S. et al. The international vertebrate pet trade network and insights from US imports of exotic pets. Bioscience 71, 977–990 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, X. et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 11, 2892 (2020).

  • Gallardo, B. et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Chang Biol. 23, 5331–5343 (2017).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tiago, P., Ceia-Hasse, A., Marques, T. A., Capinha, C. & Pereira, H. M. Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci. Rep. 7, 12832 (2017).

  • Mang, T. et al. Accounting for imperfect observation and estimating true species distributions in modelling biological invasions. Ecography 40, 1187–1197 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Thomas, M. L. et al. Many eyes on the ground: citizen science is an effective early detection tool for biosecurity. Biol. Invasions 19, 2751–2765 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, J. M. et al. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl Acad. Sci. USA 108, 656–661 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Janzen, D. H. Why Mountain Passes are Higher in the Tropics. Am. Nat. 101, 233 (1967).

    Article 
    MATH 

    Google Scholar
     

  • Chown, S. L. & Mcgeoch, M. A. Functional trait variation along animal invasion pathways. Annu Rev. Ecol. Evol. Syst. 54, 151–170 (2023).

    Article 

    Google Scholar
     

  • Bradley, B. A. et al. Observed and potential range shifts of native and nonnative species with climate change. Annu Rev. Ecol. Evol. Syst. 55, 23–40 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Yang, Q. et al. The global loss of floristic uniqueness. Nat. Commun. 12, 1–10 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Haider, S. et al. Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecol. Evol. 12, e8590 (2022).

  • Barros, A. et al. The role of roads and trails for facilitating mountain plant invasions. in Tourism, Recreation and Biological Invasions. 14–26 (GB: CABI, 2022).

  • Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).

    Article 
    MATH 

    Google Scholar
     

  • Mamantov, M. A., Gibson-Reinemer, D. K., Linck, E. B. & Sheldon, K. S. Climate-driven range shifts of montane species vary with elevation. Glob. Ecol. Biogeogr. 30, 784–794 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Rehbein, J. A. et al. Renewable energy development threatens many globally important biodiversity areas. Glob. Chang Biol. 26, 3040–3051 (2020).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vorstenbosch, T., Essl, F. & Lenzner, B. An uphill battle? The elevational distribution of alien plant species along rivers and roads in the Austrian Alps. Neobiota 1–24 (2020).

  • Liedtke, R. et al. Hiking trails as conduits for the spread of non-native species in mountain areas. Biol. Invasions 22, 1121–1134 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Rodrigues, A. S. L. et al. Global gap analysis: Priority regions for expanding the Global Protected-Area Network. Bioscience 54, 1092–1100 (2004).

  • Snethlage, M. A. et al. A hierarchical inventory of the world’s mountains for global comparative mountain science. Sci. Data 9, 1–14 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Snethlage, M. A. et al. GMBA Mountain Inventory v2. GMBA-EarthEnv https://doi.org/10.48601/earthenv-t9k2-1407 (2022).

  • Körner, C. et al. A global inventory of mountains for biogeographical applications. Alp. Bot. 127, 1–15 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Seebens, H. & Kaplan, E. DASCO: A workflow to downscale alien species checklists using occurrence records and to re-allocate species distributions across realms. NeoBiota 74, 75–91 (2022).

    Article 

    Google Scholar
     

  • Pebesma, E. & Bivand, R. Classes and methods for spatial data in. R. R. N. 5, 9–13 (2005).

    MATH 

    Google Scholar
     

  • Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R. J. 10, 439 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Hijmans, R. terra: Spatial Data Analysis. R package. CRAN (2024).

  • Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in. R. Bioinforma. 30, 2811–2812 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

  • Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 1–9 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: An r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).

    Article 

    Google Scholar
     

  • Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 30, 3–35 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Farr, T. G. & Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos (Wash. DC) 81, 583–585 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Elsen, P. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Chang 5, 772–776 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Komsta, L. & Novomestky F. moments: Moments, Cumulants, Skewness, Kurtosis and Related Tests. R package. (2022).

  • Monteiro, M. et al. Patterns and drivers of the global diversity of non-native macrofungi. Divers Distrib. 28, 2042–2055 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Schertler, A. et al. Biogeography and global flows of 100 major alien fungal and fungus-like oomycete pathogens. J Biogeogr. 1–18 (2023).

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Connor, E. F. & McCoy, E. D. The statistics and biology of the species-area relationship. Am. Nat. 113, 791–833 (1979).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • Wood, S. & Wood, M. S. Package ‘mgcv’. R package Version 1, 729 (2015).

  • Garcia-Rodriguez, A. The global distribution patterns of alien vertebrate richness in mountains. Zenodo https://doi.org/10.5281/zenodo.14751462 (2025).

  • Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Latitudinal scaling of aggregation with abundance and coexistence in forests

    Study areasTwenty-one large forest dynamic plots of areas between 20 and 50 ha with similar numbers of tropical, subtropical and temperate forests were used...
    Biodiversity
    26
    minutes

    Forb diversity globally is harmed by nutrient enrichment but can be...

    Bond, W. J. & Parr, C. L. Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol. Conserv. 143, 2395–2404...
    Biodiversity
    11
    minutes

    The importance of the plant mycorrhizal collaboration niche across scales

    Porter, S. S. et al. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct. Ecol. 34, 2075–2086 (2020).Article  ...
    Biodiversity
    17
    minutes

    A curated soil fungal dataset to advance fungal ecology and conservation...

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).Article  ADS  ...
    Biodiversity
    13
    minutes
    spot_imgspot_img