The global distribution patterns of alien vertebrate richness in mountains


  • Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Körner, C. Mountain biodiversity, its causes and function. AMBIO: A J. Hum. Environ. 33, 11–17 (2004).

    Article 
    MATH 

    Google Scholar
     

  • Perrigo, A., Hoorn, C. & Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 47, 315–325 (2020).

    Article 

    Google Scholar
     

  • Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711–719 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ansell, S. W. et al. The importance of Anatolian mountains as the cradle of global diversity in Arabis alpina, a key arctic-alpine species. Ann. Bot. 108, 241–252 (2017).

    Article 

    Google Scholar
     

  • Garcia-Rodriguez, A. et al. Amphibian Speciation Rates Support a General Role of Mountains as Biodiversity Pumps. Am. Natural. 198, E68–E79 (2021).

    Article 
    MATH 

    Google Scholar
     

  • García‐Rodríguez, A., Velasco, J. A., Villalobos, F. & Parra‐Olea, G. Effects of evolutionary time, speciation rates and local abiotic conditions on the origin and maintenance of amphibian montane diversity. Glob. Ecol. Biogeogr. 30, 674–684 (2021).

    Article 

    Google Scholar
     

  • López-Pujol, J., Zhang, F.-M., Sun, H.-Q., Ying, T.-S. & Ge, S. Mountains of Southern China as ‘Plant Museums’ and ‘Plant Cradles’: evolutionary and conservation insights. Mt Res Dev. 31, 261–269 (2011).

    Article 

    Google Scholar
     

  • Thornton, J. M. et al. Human populations in the world’s mountains: Spatio-temporal patterns and potential controls. PLoS One 17, e0271466 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Grêt-Regamey, A. & Weibel, B. Global assessment of mountain ecosystem services using earth observation data. Ecosyst. Serv. 46, (2020).

  • Payne, D., Spehn, E. M., Snethlage, M. & Fischer, M. Opportunities for research on mountain biodiversity under global change. Curr. Opin. Environ. Sustain 29, 40–47 (2017).

    Article 

    Google Scholar
     

  • Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century.Science 320, 1768–1771 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Menéndez, R., González-Megías, A., Jay-Robert, P. & Marquéz-Ferrando, R. Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges. Glob. Ecol. Biogeogr. 23, 646–657 (2014).

    Article 

    Google Scholar
     

  • Freeman, B. G., Song, Y., Feeley, K. J. & Zhu, K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol. Lett. 24, 1697–1708 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Turner, M. G., Pearson, S. M., Bolstad, P. & Wear, D. N. Effects of land-cover change on spatial pattern of forest communities in the Southern Appalachian Mountains (USA). Landsc. Ecol. 18, 449–464 (2003).

    Article 

    Google Scholar
     

  • Tasser, E., Tappeiner, U. & Cernusca, A. Ecological effects of land-use changes in the European Alps. in Global change and Mountain Regions: An overview of Current knowledge (ed. Huber, U. M.) 409–420 (2005).

  • Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Seebens, H. et al. Trends and status of alien and invasive alien species. in Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds. Roy, H. E., Pauchard, A., Stoett, P. & R. Truong) (IPBES Secretariat, Bonn, Germany, 2023).

  • Fuentes-Lillo, E. et al. Going up the Andes: patterns and drivers of non-native plant invasions across latitudinal and elevational gradients. Biodivers. Conserv 32, 4199–4219 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Chang 7, 577–580 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Alexander, J. M. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp. Bot. 126, 89–103 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Capinha, C., Essl, F., Porto, M. & Seebens, H. The worldwide networks of spread of recorded alien species. Proc. Natl Acad. Sci. USA 120, e2201911120 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pergl, J. et al. Troubling travellers: Are ecologically harmful alien species associated with particular introduction pathways? NeoBiota 32, 1–20 (2017).

    Article 

    Google Scholar
     

  • Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Rabitsch, W., Essl, F. & Schindler, S. The Rise of Non-native Vectors and Reservoirs of Human Diseases. in IMPACT OF BIOLOGICAL INVASIONS ON ECOSYSTEM SERVICES (eds Vila, M. & Hulme, P. E.)12 263–275 (SPRINGER INTERNATIONAL PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, 2017).

  • Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, (2017).

  • Iseli, E. et al. Rapid upwards spread of non-native plants in mountains across continents. Nat. Ecol. Evol. 7, 405–413 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quan, A. S., Pease, K. M., Breinholt, J. W. & Wayne, R. K. Origins of the invasive red swamp crayfish (Procambarus clarkii) in the Santa Monica Mountains. Aquat. Invasions 9, 211–219 (2014).

    Article 

    Google Scholar
     

  • Miró, A. & Ventura, M. Evidence of exotic trout mediated minnow invasion in Pyrenean high mountain lakes. Biol. Invasions 17, 791–803 (2015).

    Article 

    Google Scholar
     

  • Flesch, E. P. et al. Range expansion and population growth of non-native mountain goats in the Greater Yellowstone Area: Challenges for management. Wildl. Soc. Bull. 40, 241–250 (2016).

    Article 
    MATH 

    Google Scholar
     

  • López, B. C., Pino, J. & López, A. Explaining the successful introduction of the alpine marmot in the Pyrenees. Biol. Invasions 12, 3205–3217 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Joshi, S., Shrestha, B. B., Shrestha, L., Rashid, I. & Adkins, S. Plant Invasions in Mountains. in Global Plant Invasions (eds. Clements, D. R., Upadhyaya, M. K., Joshi, S. & Shrestha, A.) 279–300 (2022).

  • Bellard, C., Rysman, J. F., Leroy, B., Claud, C. & Mace, G. M. A global picture of biological invasion threat on islands. Nat. Ecol. Evol. 1, 1862–1869 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bacher, S. et al. Impacts of biological invasions on nature, nature’s contributions to people, and good quality of life. in Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (eds Roy, H. et al.) (IPBES Secretariat, Bonn, Germany, 2023).

  • Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, (2015).

  • Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Amano, T. et al. Tapping into non-English-language science for the conservation of global biodiversity. PLoS Biol. 19, e3001296 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Einoder, L. D. et al. Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods. PLoS One 13, e0206373 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

  • Bellard, C., Leroy, B., Thuiller, W., Rysman, J. F. & Courchamp, F. Major drivers of invasion risks throughout the world. Ecosphere 7, e01241 (2016).

  • Lockwood, J. L. et al. When pets become pests: the role of the exotic pet trade in producing invasive vertebrate animals. Front. Ecol. Environ. 17, 323–330 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Capinha, C. et al. Diversity, biogeography and the global flows of alien amphibians and reptiles. Divers Distrib. 23, 1313–1322 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Muñoz-Mas, R. et al. Two centuries of spatial and temporal dynamics of freshwater fish introductions. Glob. Ecol. Biogeogr. 32, 1632–1644 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Reino, L. et al. Networks of global bird invasion altered by regional trade ban. Science 3, 1–8 (2017).

    MATH 

    Google Scholar
     

  • Scheffers, B. R., Oliveira, B. F., Lamb, I. & Edwards, D. P. Global wildlife trade across the tree of life. Science 366, 71–76 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sinclair, J. S. et al. The international vertebrate pet trade network and insights from US imports of exotic pets. Bioscience 71, 977–990 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, X. et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 11, 2892 (2020).

  • Gallardo, B. et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Chang Biol. 23, 5331–5343 (2017).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tiago, P., Ceia-Hasse, A., Marques, T. A., Capinha, C. & Pereira, H. M. Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci. Rep. 7, 12832 (2017).

  • Mang, T. et al. Accounting for imperfect observation and estimating true species distributions in modelling biological invasions. Ecography 40, 1187–1197 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Thomas, M. L. et al. Many eyes on the ground: citizen science is an effective early detection tool for biosecurity. Biol. Invasions 19, 2751–2765 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, J. M. et al. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl Acad. Sci. USA 108, 656–661 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Janzen, D. H. Why Mountain Passes are Higher in the Tropics. Am. Nat. 101, 233 (1967).

    Article 
    MATH 

    Google Scholar
     

  • Chown, S. L. & Mcgeoch, M. A. Functional trait variation along animal invasion pathways. Annu Rev. Ecol. Evol. Syst. 54, 151–170 (2023).

    Article 

    Google Scholar
     

  • Bradley, B. A. et al. Observed and potential range shifts of native and nonnative species with climate change. Annu Rev. Ecol. Evol. Syst. 55, 23–40 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Yang, Q. et al. The global loss of floristic uniqueness. Nat. Commun. 12, 1–10 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Haider, S. et al. Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecol. Evol. 12, e8590 (2022).

  • Barros, A. et al. The role of roads and trails for facilitating mountain plant invasions. in Tourism, Recreation and Biological Invasions. 14–26 (GB: CABI, 2022).

  • Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).

    Article 
    MATH 

    Google Scholar
     

  • Mamantov, M. A., Gibson-Reinemer, D. K., Linck, E. B. & Sheldon, K. S. Climate-driven range shifts of montane species vary with elevation. Glob. Ecol. Biogeogr. 30, 784–794 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Rehbein, J. A. et al. Renewable energy development threatens many globally important biodiversity areas. Glob. Chang Biol. 26, 3040–3051 (2020).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vorstenbosch, T., Essl, F. & Lenzner, B. An uphill battle? The elevational distribution of alien plant species along rivers and roads in the Austrian Alps. Neobiota 1–24 (2020).

  • Liedtke, R. et al. Hiking trails as conduits for the spread of non-native species in mountain areas. Biol. Invasions 22, 1121–1134 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Rodrigues, A. S. L. et al. Global gap analysis: Priority regions for expanding the Global Protected-Area Network. Bioscience 54, 1092–1100 (2004).

  • Snethlage, M. A. et al. A hierarchical inventory of the world’s mountains for global comparative mountain science. Sci. Data 9, 1–14 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Snethlage, M. A. et al. GMBA Mountain Inventory v2. GMBA-EarthEnv https://doi.org/10.48601/earthenv-t9k2-1407 (2022).

  • Körner, C. et al. A global inventory of mountains for biogeographical applications. Alp. Bot. 127, 1–15 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Seebens, H. & Kaplan, E. DASCO: A workflow to downscale alien species checklists using occurrence records and to re-allocate species distributions across realms. NeoBiota 74, 75–91 (2022).

    Article 

    Google Scholar
     

  • Pebesma, E. & Bivand, R. Classes and methods for spatial data in. R. R. N. 5, 9–13 (2005).

    MATH 

    Google Scholar
     

  • Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R. J. 10, 439 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Hijmans, R. terra: Spatial Data Analysis. R package. CRAN (2024).

  • Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in. R. Bioinforma. 30, 2811–2812 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

  • Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 1–9 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: An r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).

    Article 

    Google Scholar
     

  • Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 30, 3–35 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Farr, T. G. & Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos (Wash. DC) 81, 583–585 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Elsen, P. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Chang 5, 772–776 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Komsta, L. & Novomestky F. moments: Moments, Cumulants, Skewness, Kurtosis and Related Tests. R package. (2022).

  • Monteiro, M. et al. Patterns and drivers of the global diversity of non-native macrofungi. Divers Distrib. 28, 2042–2055 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Schertler, A. et al. Biogeography and global flows of 100 major alien fungal and fungus-like oomycete pathogens. J Biogeogr. 1–18 (2023).

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Connor, E. F. & McCoy, E. D. The statistics and biology of the species-area relationship. Am. Nat. 113, 791–833 (1979).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • Wood, S. & Wood, M. S. Package ‘mgcv’. R package Version 1, 729 (2015).

  • Garcia-Rodriguez, A. The global distribution patterns of alien vertebrate richness in mountains. Zenodo https://doi.org/10.5281/zenodo.14751462 (2025).

  • Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Allowing forests to regrow and regenerate is a great way to...

    Queensland is widely known as the land clearing capital of Australia. But what’s not so well known is many...
    Biodiversity
    4
    minutes

    ‘De-extinction’ of dire wolves promotes false hope: technology can’t undo extinction

    Over the past week, the media have been inundated with news of the “de-extinction” of the dire wolf (Aenocyon...
    Biodiversity
    3
    minutes

    NDVI and vegetation volume as predictors of urban bird diversity

    UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity...
    Biodiversity
    10
    minutes

    Why ‘de-extinct’ dire wolves are a Trojan horse to hide humanity’s...

    With wildlife populations globally 73% smaller on average than in 1970 and large mammals missing from much of the...
    Biodiversity
    5
    minutes
    spot_imgspot_img