Porter, S. S. et al. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct. Ecol. 34, 2075–2086 (2020).
Marro, N. et al. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. N. Phytol. 235, 320–332 (2022).
Bever, J. D. et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478 (2010).
Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends Ecol. Evol. 34, 698–711 (2019).
Kokkoris, V. et al. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? N. Phytol. 228, 828–838 (2020).
Fei, S. et al. Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change. N. Phytol. 234, 1960–1966 (2022).
Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).
Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).
Magnoli, S. M. & Bever, J. D. Plant productivity response to inter- and intra-symbiont diversity: mechanisms, manifestations and meta-analyses. Ecol. Lett. 26, 1614–1628 (2023).
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).
Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).
Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).
Sportes, A. et al. A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza 31, 637–653 (2021).
Johnson, N. C. & Graham, J. H. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363, 411–419 (2013).
Jacquemyn, H. & Merckx, V. S. F. T. Mycorrhizal symbioses and the evolution of trophic modes in plants. J. Ecol. 107, 1567–1581 (2019).
Ma, Z. Q. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94 (2018).
Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).
Romero, F., Argüello, A., de Bruin, S. & van der Heijden, M. G. A. The plant–mycorrhizal fungi collaboration gradient depends on plant functional group. Funct. Ecol. 37, 2386–2398 (2023).
Henn, J. J. et al. Long-term alpine plant responses to global change drivers depend on functional traits. Ecol. Lett. 27, e14518 (2024).
Davison, J. et al. Niche types and community assembly. Ecol. Lett. 27, e14327 (2024).
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
Treurnicht, M. et al. Functional traits explain the Hutchinsonian niches of plant species. Glob. Ecol. Biogeogr. 29, 534–545 (2020).
Kermavnar, J., Kutnar, L., Marinšek, A. & Babij, V. Are ecological niche optimum and width of forest plant species related to their functional traits? Flora 301, 152247 (2023).
Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (John Wiley, 2001).
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).
Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).
Laliberté, E. Below-ground frontiers in trait-based plant ecology. N. Phytol. 213, 1597–1603 (2017).
Chaudhary, V. B. et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3, 160028 (2016).
Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. N. Phytol. 232, 42–59 (2021).
Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687 (2021).
Wen, Z., White, P. J., Shen, J. & Lambers, H. Linking root exudation to belowground economic traits for resource acquisition. N. Phytol. 233, 1620–1635 (2022).
Chaudhary, V. B. et al. What are mycorrhizal traits? Trends Ecol. Evol. 37, 573–581 (2022).
Chagnon, P. L., Bradley, R. L., Maherali, H. & Klironomos, J. N. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18, 484–491 (2013).
Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).
Weber, S. E. et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 40, 62–71 (2019).
Moora, M. Mycorrhizal traits and plant communities: perspectives for integration. J. Veg. Sci. 25, 1126–1132 (2014).
Koide, R. T. & Schreiner, R. P. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 557–581 (1992).
Gerz, M., Bueno, C. G., Zobel, M. & Moora, M. Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J. Veg. Sci. 27, 89–99 (2016).
Grman, E. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93, 711–718 (2012).
Smith, F. A. & Smith, S. E. How harmonious are arbuscular mycorrhizal symbioses? Inconsistent concepts reflect different mindsets as well as results. N. Phytol. 205, 1381–1384 (2015).
Wang, W. et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10, 1147–1158 (2017).
Cosme, M., Fernández, I., Van der Heijden, M. G. A. & Pieterse, C. M. J. Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Sci. 23, 577–587 (2018).
Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).
Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 220, 1108–1115 (2018).
Lambers, H. & Teste, F. P. Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ. 36, 1191–1195 (2013).
Yi, R. et al. Complementary belowground strategies underlie species coexistence in an early successional forest. N. Phytol. 238, 612–623 (2023).
Bennett, A. E. & Groten, K. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant Biol. 73, 649–672 (2022).
Guo, L. et al. Evolutionary and ecological forces shape nutrient strategies of mycorrhizal woody plants. Ecol. Lett. 27, e14330 (2024).
Tedersoo, L. & Brundrett, M. C. Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stud. 230, 407–467 (2017).
Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 227, 955–966 (2020).
Meng, Y. et al. Environmental modulation of plant mycorrhizal traits in the global flora. Ecol. Lett. 26, 1862–1876 (2023).
Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).
Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. N. Phytol. 217, 1213–1229 (2018).
Meeds, J. A. et al. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME J. 15, 1478–1489 (2021).
Cheeke, T. E., Zheng, C., Koziol, L., Gurholt, C. R. & Bever, J. D. Sensitivity to AMF species is greater in late-successional than early-successional native or nonnative grassland plants. Ecology 100, e02855 (2019).
Sikes, B. A., Powell, J. R. & Rillig, M. C. Deciphering the relative contributions of multiple functions within plant–microbe symbioses. Ecology 91, 1591–1597 (2010).
Klironomos, J. N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003).
Romero, F. et al. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Sci. Total Environ. 885, 163683 (2023).
Koziol, L. & Bever, J. D. Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology 96, 1768–1774 (2015).
Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1, 116 (2018).
Ramana, J. V., Tylianakis, J. M., Ridgway, H. J. & Dickie, I. A. Root diameter, host specificity and arbuscular mycorrhizal fungal community composition among native and exotic plant species. N. Phytol. 239, 301–310 (2023).
Zobel, M., Koorem, K., Moora, M., Semchenko, M. & Davison, J. Symbiont plasticity as a driver of plant success. N. Phytol. 241, 2340–2352 (2024).
Heklau, H., Schindler, N., Eisenhauer, N., Ferlian, O. & Bruelheide, H. Temporal variation of mycorrhization rates in a tree diversity experiment. Ecol. Evol. 13, e10002 (2023).
Schaefer, E. A., Gehring, C. A., Phillips, R. P., Gadrat, E. & Karst, J. Variation of root functional traits indicates flexible below-ground economic strategies of the riparian tree species Populus fremontii. Funct. Ecol. 38, 2003–2014 (2024).
Graham, J. H. & Eissenstat, D. M. Field evidence for the carbon cost of citrus mycorrhizas. N. Phytol. 140, 103–110 (1998).
Ma, X. et al. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Glob. Ecol. Biogeogr. 32, 1423–1434 (2023).
Konvalinková, T., Püschel, D., Řezáčová, V., Gryndlerová, H. & Jansa, J. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419, 319–333 (2017).
Li, M., Jordan, N. R., Koide, R. T., Yannarell, A. C. & Davis, A. S. Meta-analysis of crop and weed growth responses to arbuscular mycorrhizal fungi: implications for integrated weed management. Weed Sci. 64, 642–652 (2016).
Nouri, E. et al. Phosphate suppression of arbuscular mycorrhizal symbiosis involves gibberellic acid signaling. Plant Cell Physiol. 62, 959–970 (2021).
Guillen-Otero, T., Lee, S.-J., Hertel, D. & Kessler, M. Facultative mycorrhization in a fern (Struthiopteris spicant L. Weiss) is bound to light intensity. BMC Plant Biol. 24, 103 (2024).
Jarratt-Barnham, E., Zarrabian, D. & Oldroyd, G. E. D. Symbiotic regulation: how plants seek salvation in starvation. Curr. Biol. 32, R46–R48 (2022).
Shi, J. et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184, 5527–5540.e18 (2021).
Borda, V., Reinhart, K. O., Ortega, M. G., Burni, M. & Urcelay, C. Roots of invasive woody plants produce more diverse flavonoids than non-invasive taxa, a global analysis. Biol. Invasions 24, 2757–2768 (2022).
Tian, B. et al. Gene expression controlling signalling molecules within mutualistic associations of an invasive plant: an evolutionary perspective. J. Ecol. 112, 1818–1831 (2024).
Soudzilovskaia, N. A. et al. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. N. Phytol. 208, 280–293 (2015).
Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).
Liang, S. et al. Positioning absorptive root respiration in the root economics space across woody and herbaceous species. J. Ecol. 111, 2710–2720 (2023).
Lin, G., McCormack, M. L. & Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. https://doi.org/10.1111/1365-2745.12429 (2015).
Albornoz, F. E., Burgess, T. I., Lambers, H., Etchells, H. & Laliberté, E. Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient-acquisition strategies. J. Ecol. 105, 549–557 (2017).
Becklin, K. M., Pallo, M. L. & Galen, C. Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. J. Ecol. 100, 343–351 (2012).
Roche, M. D. et al. Negative effects of an allelopathic invader on AM fungal plant species drive community-level responses. Ecology 102, e03201 (2021).
Veiga, R. S. L. et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36, 1926–1937 (2013).
Fernandez, N. et al. Asymmetric interaction between two mycorrhizal fungal guilds and consequences for the establishment of their host plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.873204 (2022).
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).
Kohout, P. Biogeography of ericoid mycorrhiza. Ecol. Stud. 230, 179–193 (2017).
Näsholm, T. et al. Boreal forest plants take up organic nitrogen. Nature 392, 914–916 (1998).
Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).
Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).
Perotto, S., Daghino, S. & Martino, E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? N. Phytol. 220, 1141–1147 (2018).
Hartnett, D. C., Hetrick, B. A. D., Wilson, G. W. T. & Gibson, D. J. Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J. Ecol. 81, 787–795 (1993).
Collier, F. A. & Bidartondo, M. I. Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J. Ecol. 97, 950–963 (2009).
Primieri, S., Magnoli, S. M., Koffel, T., Stürmer, S. L. & Bever, J. D. Perennial, but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia: a meta-analysis. N. Phytol. 233, 505–514 (2022).
Zhou, Y. et al. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition. Funct. Ecol. 32, 1168–1179 (2018).
Zhang, K., Zentella, R., Burkey, K. O., Liao, H.-L. & Tisdale, R. H. Long-term tropospheric ozone pollution disrupts plant–microbe–soil interactions in the agroecosystem. Glob. Change Biol. 30, e17215 (2024).
Puschel, D. et al. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00390 (2017).
Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637 (2019).
Frew, A. et al. Plant herbivore protection by arbuscular mycorrhizas: a role for fungal diversity? N. Phytol. 233, 1022–1031 (2022).
Frew, A. et al. Herbivory-driven shifts in arbuscular mycorrhizal fungal community assembly: increased fungal competition and plant phosphorus benefits. N. Phytol. 241, 1891–1899 (2024).
Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A. & Pozo, M. J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38, 651–664 (2012).
Delavaux, C. S., Smith-Ramesh, L. M. & Kuebbing, S. E. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98, 2111–2119 (2017).
Marx, D. H. Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu. Rev. Phytopathol. 10, 429–454 (1972).
Laliberte, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. N. Phytol. 206, 507–521 (2015).
Xing, Z. et al. Foliar herbivory-enhanced mycorrhization is associated with increased levels of lipids in root and root exudates. J. Ecol. 112, 701–716 (2024).
Lekberg, Y. et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 12, 3484 (2021).
Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).
Diekmann, M. Species indicator values as an important tool in applied plant ecology — a review. Basic Appl. Ecol. 4, 493–506 (2003).
Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Botany 99, 967–985 (2007).
Borgy, B. et al. Sensitivity of community-level trait–environment relationships to data representativeness: a test for functional biogeography. Glob. Ecol. Biogeogr. 26, 729–739 (2017).
Doledec, S., Chessel, D. & Gimaret-Carpentier, C. Niche separation in community analysis: a new method. Ecology 81, 2914–2927 (2000).
Peres-Neto, P. R., Dray, S. & ter Braak, C. J. F. Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography 40, 806–816 (2017).
Niku, J., Hui, F. K. C., Taskinen, S. & Warton, D. I. gllvm: fast analysis of multivariate abundance data with generalized linear latent variable models in R. Methods Ecol. Evol. 10, 2173–2182 (2019).
Toussaint, A. et al. Asymmetric patterns of global diversity among plants and mycorrhizal fungi. J. Veg. Sci. 31, 355–366 (2020).
Zobel, M. et al. Ancient environmental DNA reveals shifts in dominant mutualisms during the late Quaternary. Nat. Commun. 9, 139 (2018).
Maes, S. L. et al. Plant functional trait response to environmental drivers across European temperate forest understorey communities. Plant Biol. 22, 410–424 (2020).
Weiher, E. et al. Advances, challenges and a developing synthesis of ecological community assembly theory. Philos. Trans. R. Soc. B Biol. Sci. 366, 2403–2413 (2011).
Veresoglou, S. D., Xi, J. & Peñuelas, J. Mechanisms of coexistence: exploring species sorting and character displacement in woody plants to alleviate belowground competition. Ecol. Lett. 27, e14489 (2024).
Zhang, E. et al. Mycorrhizal symbiosis increases plant phylogenetic diversity and regulates community assembly in grasslands. Ecol. Lett. 27, e14516 (2024).
Barceló, M., van Bodegom, P. M. & Soudzilovskaia, N. A. Fine-resolution global maps of root biomass carbon colonized by arbuscular and ectomycorrhizal fungi. Sci. Data 10, 56 (2023).
Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).
Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).
Barceló, M., van Bodegom, P. M., Tedersoo, L., Olsson, P. A. & Soudzilovskaia, N. A. Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests. J. Ecol. 110, 1271–1282 (2022).
Hawkins, H.-J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023).
Martin, F. M. & van der Heijden, M. G. A. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. N. Phytol. 242, 1486–1506 (2024).
Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).
Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? N. Phytol. 157, 475–492 (2003).
Noreika, N. et al. Forest biomass, soil and biodiversity relationships originate from biogeographic affinity and direct ecological effects. Oikos 128, 1653–1665 (2019).
Vasar, M. et al. Global soil microbiomes: a new frontline of biome-ecology research. Glob. Ecol. Biogeogr. 31, 1120–1132 (2022).
Bueno, C. G. et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob. Ecol. Biogeogr. 26, 690–699 (2017).
Kytoviita, M. M. Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol. Ecol. 53, 27–32 (2005).
Gerz, M., Bueno, C. G., Ozinga, W. A., Zobel, M. & Moora, M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J. Ecol. 106, 254–264 (2018).
Poschlod, P. & WallisDeVries, M. F. The historical and socio-economic perspective of calcareous grasslands — lessons from the distant and recent past. Biol. Conserv. 104, 361–376 (2002).
Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in Central Europe — a review. Grass Forage Sci. 68, 345–363 (2013).
Večeřa, M. et al. Decoupled phylogenetic and functional diversity in European grasslands. Preslia 95, 413–445 (2023).
Lepik, M. et al. The nitrogen-fixing potential of plant communities depends on climate and land management. J. Biogeogr. 50, 591–601 (2023).
Strullu-Derrien, C., Selosse, M.-A., Kenrick, P. & Martin, F. M. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. N. Phytol. 220, 1012–1030 (2018).
Bredenkamp, G. J., Spada, F. & Kazmierczak, E. On the origin of northern and southern hemisphere grasslands. Plant Ecol. 163, 209–229 (2002).
Stromberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).
Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).
Tichý, L. et al. Ellenberg-type indicator values for European vascular plant species. J. Veg. Sci. 34, e13168 (2023).
Lutz, S. et al. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat. Microbiol. 8, 2277–2289 (2023).
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
Sabatini, F. M. et al. sPlotOpen — an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).
Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K. & McGlinn, D. J. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Naturalist 188, E113–E125 (2016).
Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356, eabd4501 (2017).
Tedersoo, L. & Smith, M. E. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27, 83–99 (2013).
Leopold, D. R. Ericoid fungal diversity: challenges and opportunities for mycorrhizal research. Fungal Ecol. 24, 114–123 (2016).
Li, T., Yang, W., Wu, S., Selosse, M.-A. & Gao, J. Progress and prospects of mycorrhizal fungal diversity in orchids. Front. Plant Sci. 12, 646325 (2021).