The importance of the plant mycorrhizal collaboration niche across scales


  • Porter, S. S. et al. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct. Ecol. 34, 2075–2086 (2020).

    Article 

    Google Scholar
     

  • Marro, N. et al. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. N. Phytol. 235, 320–332 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bever, J. D. et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478 (2010).

    Article 

    Google Scholar
     

  • Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends Ecol. Evol. 34, 698–711 (2019).

    Article 

    Google Scholar
     

  • Kokkoris, V. et al. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? N. Phytol. 228, 828–838 (2020).

    Article 

    Google Scholar
     

  • Fei, S. et al. Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change. N. Phytol. 234, 1960–1966 (2022).

    Article 

    Google Scholar
     

  • Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).

    Article 

    Google Scholar
     

  • Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).

    Article 

    Google Scholar
     

  • Magnoli, S. M. & Bever, J. D. Plant productivity response to inter- and intra-symbiont diversity: mechanisms, manifestations and meta-analyses. Ecol. Lett. 26, 1614–1628 (2023).

    Article 

    Google Scholar
     

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Article 

    Google Scholar
     

  • Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).

  • Sportes, A. et al. A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza 31, 637–653 (2021).

    Article 

    Google Scholar
     

  • Johnson, N. C. & Graham, J. H. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363, 411–419 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jacquemyn, H. & Merckx, V. S. F. T. Mycorrhizal symbioses and the evolution of trophic modes in plants. J. Ecol. 107, 1567–1581 (2019).

    Article 

    Google Scholar
     

  • Ma, Z. Q. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Romero, F., Argüello, A., de Bruin, S. & van der Heijden, M. G. A. The plant–mycorrhizal fungi collaboration gradient depends on plant functional group. Funct. Ecol. 37, 2386–2398 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Henn, J. J. et al. Long-term alpine plant responses to global change drivers depend on functional traits. Ecol. Lett. 27, e14518 (2024).

    Article 

    Google Scholar
     

  • Davison, J. et al. Niche types and community assembly. Ecol. Lett. 27, e14327 (2024).

    Article 

    Google Scholar
     

  • Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article 

    Google Scholar
     

  • Treurnicht, M. et al. Functional traits explain the Hutchinsonian niches of plant species. Glob. Ecol. Biogeogr. 29, 534–545 (2020).

    Article 

    Google Scholar
     

  • Kermavnar, J., Kutnar, L., Marinšek, A. & Babij, V. Are ecological niche optimum and width of forest plant species related to their functional traits? Flora 301, 152247 (2023).

    Article 

    Google Scholar
     

  • Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (John Wiley, 2001).

  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article 

    Google Scholar
     

  • Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).

    Article 

    Google Scholar
     

  • Laliberté, E. Below-ground frontiers in trait-based plant ecology. N. Phytol. 213, 1597–1603 (2017).

    Article 

    Google Scholar
     

  • Chaudhary, V. B. et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3, 160028 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. N. Phytol. 232, 42–59 (2021).

    Article 

    Google Scholar
     

  • Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wen, Z., White, P. J., Shen, J. & Lambers, H. Linking root exudation to belowground economic traits for resource acquisition. N. Phytol. 233, 1620–1635 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhary, V. B. et al. What are mycorrhizal traits? Trends Ecol. Evol. 37, 573–581 (2022).

    Article 

    Google Scholar
     

  • Chagnon, P. L., Bradley, R. L., Maherali, H. & Klironomos, J. N. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18, 484–491 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).

    Article 

    Google Scholar
     

  • Weber, S. E. et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 40, 62–71 (2019).

    Article 

    Google Scholar
     

  • Moora, M. Mycorrhizal traits and plant communities: perspectives for integration. J. Veg. Sci. 25, 1126–1132 (2014).

    Article 

    Google Scholar
     

  • Koide, R. T. & Schreiner, R. P. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 557–581 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Gerz, M., Bueno, C. G., Zobel, M. & Moora, M. Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J. Veg. Sci. 27, 89–99 (2016).

    Article 

    Google Scholar
     

  • Grman, E. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93, 711–718 (2012).

    Article 

    Google Scholar
     

  • Smith, F. A. & Smith, S. E. How harmonious are arbuscular mycorrhizal symbioses? Inconsistent concepts reflect different mindsets as well as results. N. Phytol. 205, 1381–1384 (2015).

    Article 

    Google Scholar
     

  • Wang, W. et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10, 1147–1158 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cosme, M., Fernández, I., Van der Heijden, M. G. A. & Pieterse, C. M. J. Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Sci. 23, 577–587 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 220, 1108–1115 (2018).

    Article 

    Google Scholar
     

  • Lambers, H. & Teste, F. P. Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ. 36, 1191–1195 (2013).

    Article 

    Google Scholar
     

  • Yi, R. et al. Complementary belowground strategies underlie species coexistence in an early successional forest. N. Phytol. 238, 612–623 (2023).

    Article 

    Google Scholar
     

  • Bennett, A. E. & Groten, K. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant Biol. 73, 649–672 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, L. et al. Evolutionary and ecological forces shape nutrient strategies of mycorrhizal woody plants. Ecol. Lett. 27, e14330 (2024).

    Article 

    Google Scholar
     

  • Tedersoo, L. & Brundrett, M. C. Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stud. 230, 407–467 (2017).

    Article 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 227, 955–966 (2020).

    Article 

    Google Scholar
     

  • Meng, Y. et al. Environmental modulation of plant mycorrhizal traits in the global flora. Ecol. Lett. 26, 1862–1876 (2023).

    Article 

    Google Scholar
     

  • Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. N. Phytol. 217, 1213–1229 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Meeds, J. A. et al. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME J. 15, 1478–1489 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cheeke, T. E., Zheng, C., Koziol, L., Gurholt, C. R. & Bever, J. D. Sensitivity to AMF species is greater in late-successional than early-successional native or nonnative grassland plants. Ecology 100, e02855 (2019).

    Article 

    Google Scholar
     

  • Sikes, B. A., Powell, J. R. & Rillig, M. C. Deciphering the relative contributions of multiple functions within plant–microbe symbioses. Ecology 91, 1591–1597 (2010).

    Article 

    Google Scholar
     

  • Klironomos, J. N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003).

    Article 

    Google Scholar
     

  • Romero, F. et al. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Sci. Total Environ. 885, 163683 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Koziol, L. & Bever, J. D. Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology 96, 1768–1774 (2015).

    Article 

    Google Scholar
     

  • Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1, 116 (2018).

    Article 

    Google Scholar
     

  • Ramana, J. V., Tylianakis, J. M., Ridgway, H. J. & Dickie, I. A. Root diameter, host specificity and arbuscular mycorrhizal fungal community composition among native and exotic plant species. N. Phytol. 239, 301–310 (2023).

    Article 

    Google Scholar
     

  • Zobel, M., Koorem, K., Moora, M., Semchenko, M. & Davison, J. Symbiont plasticity as a driver of plant success. N. Phytol. 241, 2340–2352 (2024).

    Article 

    Google Scholar
     

  • Heklau, H., Schindler, N., Eisenhauer, N., Ferlian, O. & Bruelheide, H. Temporal variation of mycorrhization rates in a tree diversity experiment. Ecol. Evol. 13, e10002 (2023).

    Article 

    Google Scholar
     

  • Schaefer, E. A., Gehring, C. A., Phillips, R. P., Gadrat, E. & Karst, J. Variation of root functional traits indicates flexible below-ground economic strategies of the riparian tree species Populus fremontii. Funct. Ecol. 38, 2003–2014 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Graham, J. H. & Eissenstat, D. M. Field evidence for the carbon cost of citrus mycorrhizas. N. Phytol. 140, 103–110 (1998).

    Article 

    Google Scholar
     

  • Ma, X. et al. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Glob. Ecol. Biogeogr. 32, 1423–1434 (2023).

    Article 

    Google Scholar
     

  • Konvalinková, T., Püschel, D., Řezáčová, V., Gryndlerová, H. & Jansa, J. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419, 319–333 (2017).

    Article 

    Google Scholar
     

  • Li, M., Jordan, N. R., Koide, R. T., Yannarell, A. C. & Davis, A. S. Meta-analysis of crop and weed growth responses to arbuscular mycorrhizal fungi: implications for integrated weed management. Weed Sci. 64, 642–652 (2016).

    Article 

    Google Scholar
     

  • Nouri, E. et al. Phosphate suppression of arbuscular mycorrhizal symbiosis involves gibberellic acid signaling. Plant Cell Physiol. 62, 959–970 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guillen-Otero, T., Lee, S.-J., Hertel, D. & Kessler, M. Facultative mycorrhization in a fern (Struthiopteris spicant L. Weiss) is bound to light intensity. BMC Plant Biol. 24, 103 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jarratt-Barnham, E., Zarrabian, D. & Oldroyd, G. E. D. Symbiotic regulation: how plants seek salvation in starvation. Curr. Biol. 32, R46–R48 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184, 5527–5540.e18 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Borda, V., Reinhart, K. O., Ortega, M. G., Burni, M. & Urcelay, C. Roots of invasive woody plants produce more diverse flavonoids than non-invasive taxa, a global analysis. Biol. Invasions 24, 2757–2768 (2022).

    Article 

    Google Scholar
     

  • Tian, B. et al. Gene expression controlling signalling molecules within mutualistic associations of an invasive plant: an evolutionary perspective. J. Ecol. 112, 1818–1831 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. N. Phytol. 208, 280–293 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liang, S. et al. Positioning absorptive root respiration in the root economics space across woody and herbaceous species. J. Ecol. 111, 2710–2720 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, G., McCormack, M. L. & Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. https://doi.org/10.1111/1365-2745.12429 (2015).

  • Albornoz, F. E., Burgess, T. I., Lambers, H., Etchells, H. & Laliberté, E. Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient-acquisition strategies. J. Ecol. 105, 549–557 (2017).

    Article 

    Google Scholar
     

  • Becklin, K. M., Pallo, M. L. & Galen, C. Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. J. Ecol. 100, 343–351 (2012).

    Article 

    Google Scholar
     

  • Roche, M. D. et al. Negative effects of an allelopathic invader on AM fungal plant species drive community-level responses. Ecology 102, e03201 (2021).

    Article 

    Google Scholar
     

  • Veiga, R. S. L. et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36, 1926–1937 (2013).

    Article 

    Google Scholar
     

  • Fernandez, N. et al. Asymmetric interaction between two mycorrhizal fungal guilds and consequences for the establishment of their host plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.873204 (2022).

  • Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kohout, P. Biogeography of ericoid mycorrhiza. Ecol. Stud. 230, 179–193 (2017).

    Article 

    Google Scholar
     

  • Näsholm, T. et al. Boreal forest plants take up organic nitrogen. Nature 392, 914–916 (1998).

    Article 

    Google Scholar
     

  • Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Perotto, S., Daghino, S. & Martino, E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? N. Phytol. 220, 1141–1147 (2018).

    Article 

    Google Scholar
     

  • Hartnett, D. C., Hetrick, B. A. D., Wilson, G. W. T. & Gibson, D. J. Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J. Ecol. 81, 787–795 (1993).

    Article 

    Google Scholar
     

  • Collier, F. A. & Bidartondo, M. I. Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J. Ecol. 97, 950–963 (2009).

    Article 

    Google Scholar
     

  • Primieri, S., Magnoli, S. M., Koffel, T., Stürmer, S. L. & Bever, J. D. Perennial, but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia: a meta-analysis. N. Phytol. 233, 505–514 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition. Funct. Ecol. 32, 1168–1179 (2018).

    Article 

    Google Scholar
     

  • Zhang, K., Zentella, R., Burkey, K. O., Liao, H.-L. & Tisdale, R. H. Long-term tropospheric ozone pollution disrupts plant–microbe–soil interactions in the agroecosystem. Glob. Change Biol. 30, e17215 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Puschel, D. et al. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00390 (2017).

  • Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637 (2019).

    Article 

    Google Scholar
     

  • Frew, A. et al. Plant herbivore protection by arbuscular mycorrhizas: a role for fungal diversity? N. Phytol. 233, 1022–1031 (2022).

    Article 

    Google Scholar
     

  • Frew, A. et al. Herbivory-driven shifts in arbuscular mycorrhizal fungal community assembly: increased fungal competition and plant phosphorus benefits. N. Phytol. 241, 1891–1899 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A. & Pozo, M. J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38, 651–664 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Delavaux, C. S., Smith-Ramesh, L. M. & Kuebbing, S. E. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98, 2111–2119 (2017).

    Article 

    Google Scholar
     

  • Marx, D. H. Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu. Rev. Phytopathol. 10, 429–454 (1972).

    Article 
    CAS 

    Google Scholar
     

  • Laliberte, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. N. Phytol. 206, 507–521 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xing, Z. et al. Foliar herbivory-enhanced mycorrhization is associated with increased levels of lipids in root and root exudates. J. Ecol. 112, 701–716 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lekberg, Y. et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 12, 3484 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article 

    Google Scholar
     

  • Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Diekmann, M. Species indicator values as an important tool in applied plant ecology — a review. Basic Appl. Ecol. 4, 493–506 (2003).

    Article 

    Google Scholar
     

  • Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Botany 99, 967–985 (2007).

    Article 

    Google Scholar
     

  • Borgy, B. et al. Sensitivity of community-level trait–environment relationships to data representativeness: a test for functional biogeography. Glob. Ecol. Biogeogr. 26, 729–739 (2017).

    Article 

    Google Scholar
     

  • Doledec, S., Chessel, D. & Gimaret-Carpentier, C. Niche separation in community analysis: a new method. Ecology 81, 2914–2927 (2000).

    Article 

    Google Scholar
     

  • Peres-Neto, P. R., Dray, S. & ter Braak, C. J. F. Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography 40, 806–816 (2017).

    Article 

    Google Scholar
     

  • Niku, J., Hui, F. K. C., Taskinen, S. & Warton, D. I. gllvm: fast analysis of multivariate abundance data with generalized linear latent variable models in R. Methods Ecol. Evol. 10, 2173–2182 (2019).

    Article 

    Google Scholar
     

  • Toussaint, A. et al. Asymmetric patterns of global diversity among plants and mycorrhizal fungi. J. Veg. Sci. 31, 355–366 (2020).

    Article 

    Google Scholar
     

  • Zobel, M. et al. Ancient environmental DNA reveals shifts in dominant mutualisms during the late Quaternary. Nat. Commun. 9, 139 (2018).

    Article 

    Google Scholar
     

  • Maes, S. L. et al. Plant functional trait response to environmental drivers across European temperate forest understorey communities. Plant Biol. 22, 410–424 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weiher, E. et al. Advances, challenges and a developing synthesis of ecological community assembly theory. Philos. Trans. R. Soc. B Biol. Sci. 366, 2403–2413 (2011).

    Article 

    Google Scholar
     

  • Veresoglou, S. D., Xi, J. & Peñuelas, J. Mechanisms of coexistence: exploring species sorting and character displacement in woody plants to alleviate belowground competition. Ecol. Lett. 27, e14489 (2024).

    Article 

    Google Scholar
     

  • Zhang, E. et al. Mycorrhizal symbiosis increases plant phylogenetic diversity and regulates community assembly in grasslands. Ecol. Lett. 27, e14516 (2024).

    Article 

    Google Scholar
     

  • Barceló, M., van Bodegom, P. M. & Soudzilovskaia, N. A. Fine-resolution global maps of root biomass carbon colonized by arbuscular and ectomycorrhizal fungi. Sci. Data 10, 56 (2023).

    Article 

    Google Scholar
     

  • Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    Article 

    Google Scholar
     

  • Barceló, M., van Bodegom, P. M., Tedersoo, L., Olsson, P. A. & Soudzilovskaia, N. A. Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests. J. Ecol. 110, 1271–1282 (2022).

    Article 

    Google Scholar
     

  • Hawkins, H.-J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023).

    Article 

    Google Scholar
     

  • Martin, F. M. & van der Heijden, M. G. A. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. N. Phytol. 242, 1486–1506 (2024).

    Article 

    Google Scholar
     

  • Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).

    Article 

    Google Scholar
     

  • Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? N. Phytol. 157, 475–492 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Noreika, N. et al. Forest biomass, soil and biodiversity relationships originate from biogeographic affinity and direct ecological effects. Oikos 128, 1653–1665 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vasar, M. et al. Global soil microbiomes: a new frontline of biome-ecology research. Glob. Ecol. Biogeogr. 31, 1120–1132 (2022).

    Article 

    Google Scholar
     

  • Bueno, C. G. et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob. Ecol. Biogeogr. 26, 690–699 (2017).

    Article 

    Google Scholar
     

  • Kytoviita, M. M. Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol. Ecol. 53, 27–32 (2005).

    Article 

    Google Scholar
     

  • Gerz, M., Bueno, C. G., Ozinga, W. A., Zobel, M. & Moora, M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J. Ecol. 106, 254–264 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Poschlod, P. & WallisDeVries, M. F. The historical and socio-economic perspective of calcareous grasslands — lessons from the distant and recent past. Biol. Conserv. 104, 361–376 (2002).

    Article 

    Google Scholar
     

  • Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in Central Europe — a review. Grass Forage Sci. 68, 345–363 (2013).

    Article 

    Google Scholar
     

  • Večeřa, M. et al. Decoupled phylogenetic and functional diversity in European grasslands. Preslia 95, 413–445 (2023).

    Article 

    Google Scholar
     

  • Lepik, M. et al. The nitrogen-fixing potential of plant communities depends on climate and land management. J. Biogeogr. 50, 591–601 (2023).

    Article 

    Google Scholar
     

  • Strullu-Derrien, C., Selosse, M.-A., Kenrick, P. & Martin, F. M. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. N. Phytol. 220, 1012–1030 (2018).

    Article 

    Google Scholar
     

  • Bredenkamp, G. J., Spada, F. & Kazmierczak, E. On the origin of northern and southern hemisphere grasslands. Plant Ecol. 163, 209–229 (2002).

    Article 

    Google Scholar
     

  • Stromberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tichý, L. et al. Ellenberg-type indicator values for European vascular plant species. J. Veg. Sci. 34, e13168 (2023).

    Article 

    Google Scholar
     

  • Lutz, S. et al. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat. Microbiol. 8, 2277–2289 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article 

    Google Scholar
     

  • Sabatini, F. M. et al. sPlotOpen — an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).

    Article 

    Google Scholar
     

  • Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K. & McGlinn, D. J. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Naturalist 188, E113–E125 (2016).

    Article 

    Google Scholar
     

  • Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356, eabd4501 (2017).

    Article 

    Google Scholar
     

  • Tedersoo, L. & Smith, M. E. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27, 83–99 (2013).

    Article 

    Google Scholar
     

  • Leopold, D. R. Ericoid fungal diversity: challenges and opportunities for mycorrhizal research. Fungal Ecol. 24, 114–123 (2016).

    Article 

    Google Scholar
     

  • Li, T., Yang, W., Wu, S., Selosse, M.-A. & Gao, J. Progress and prospects of mycorrhizal fungal diversity in orchids. Front. Plant Sci. 12, 646325 (2021).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img