The importance of the plant mycorrhizal collaboration niche across scales


  • Porter, S. S. et al. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct. Ecol. 34, 2075–2086 (2020).

    Article 

    Google Scholar
     

  • Marro, N. et al. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. N. Phytol. 235, 320–332 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bever, J. D. et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478 (2010).

    Article 

    Google Scholar
     

  • Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends Ecol. Evol. 34, 698–711 (2019).

    Article 

    Google Scholar
     

  • Kokkoris, V. et al. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? N. Phytol. 228, 828–838 (2020).

    Article 

    Google Scholar
     

  • Fei, S. et al. Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change. N. Phytol. 234, 1960–1966 (2022).

    Article 

    Google Scholar
     

  • Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).

    Article 

    Google Scholar
     

  • Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).

    Article 

    Google Scholar
     

  • Magnoli, S. M. & Bever, J. D. Plant productivity response to inter- and intra-symbiont diversity: mechanisms, manifestations and meta-analyses. Ecol. Lett. 26, 1614–1628 (2023).

    Article 

    Google Scholar
     

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Article 

    Google Scholar
     

  • Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).

  • Sportes, A. et al. A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza 31, 637–653 (2021).

    Article 

    Google Scholar
     

  • Johnson, N. C. & Graham, J. H. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363, 411–419 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jacquemyn, H. & Merckx, V. S. F. T. Mycorrhizal symbioses and the evolution of trophic modes in plants. J. Ecol. 107, 1567–1581 (2019).

    Article 

    Google Scholar
     

  • Ma, Z. Q. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Romero, F., Argüello, A., de Bruin, S. & van der Heijden, M. G. A. The plant–mycorrhizal fungi collaboration gradient depends on plant functional group. Funct. Ecol. 37, 2386–2398 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Henn, J. J. et al. Long-term alpine plant responses to global change drivers depend on functional traits. Ecol. Lett. 27, e14518 (2024).

    Article 

    Google Scholar
     

  • Davison, J. et al. Niche types and community assembly. Ecol. Lett. 27, e14327 (2024).

    Article 

    Google Scholar
     

  • Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article 

    Google Scholar
     

  • Treurnicht, M. et al. Functional traits explain the Hutchinsonian niches of plant species. Glob. Ecol. Biogeogr. 29, 534–545 (2020).

    Article 

    Google Scholar
     

  • Kermavnar, J., Kutnar, L., Marinšek, A. & Babij, V. Are ecological niche optimum and width of forest plant species related to their functional traits? Flora 301, 152247 (2023).

    Article 

    Google Scholar
     

  • Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (John Wiley, 2001).

  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article 

    Google Scholar
     

  • Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).

    Article 

    Google Scholar
     

  • Laliberté, E. Below-ground frontiers in trait-based plant ecology. N. Phytol. 213, 1597–1603 (2017).

    Article 

    Google Scholar
     

  • Chaudhary, V. B. et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3, 160028 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. N. Phytol. 232, 42–59 (2021).

    Article 

    Google Scholar
     

  • Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wen, Z., White, P. J., Shen, J. & Lambers, H. Linking root exudation to belowground economic traits for resource acquisition. N. Phytol. 233, 1620–1635 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhary, V. B. et al. What are mycorrhizal traits? Trends Ecol. Evol. 37, 573–581 (2022).

    Article 

    Google Scholar
     

  • Chagnon, P. L., Bradley, R. L., Maherali, H. & Klironomos, J. N. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18, 484–491 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).

    Article 

    Google Scholar
     

  • Weber, S. E. et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 40, 62–71 (2019).

    Article 

    Google Scholar
     

  • Moora, M. Mycorrhizal traits and plant communities: perspectives for integration. J. Veg. Sci. 25, 1126–1132 (2014).

    Article 

    Google Scholar
     

  • Koide, R. T. & Schreiner, R. P. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 557–581 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Gerz, M., Bueno, C. G., Zobel, M. & Moora, M. Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J. Veg. Sci. 27, 89–99 (2016).

    Article 

    Google Scholar
     

  • Grman, E. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93, 711–718 (2012).

    Article 

    Google Scholar
     

  • Smith, F. A. & Smith, S. E. How harmonious are arbuscular mycorrhizal symbioses? Inconsistent concepts reflect different mindsets as well as results. N. Phytol. 205, 1381–1384 (2015).

    Article 

    Google Scholar
     

  • Wang, W. et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10, 1147–1158 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cosme, M., Fernández, I., Van der Heijden, M. G. A. & Pieterse, C. M. J. Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Sci. 23, 577–587 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 220, 1108–1115 (2018).

    Article 

    Google Scholar
     

  • Lambers, H. & Teste, F. P. Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ. 36, 1191–1195 (2013).

    Article 

    Google Scholar
     

  • Yi, R. et al. Complementary belowground strategies underlie species coexistence in an early successional forest. N. Phytol. 238, 612–623 (2023).

    Article 

    Google Scholar
     

  • Bennett, A. E. & Groten, K. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant Biol. 73, 649–672 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, L. et al. Evolutionary and ecological forces shape nutrient strategies of mycorrhizal woody plants. Ecol. Lett. 27, e14330 (2024).

    Article 

    Google Scholar
     

  • Tedersoo, L. & Brundrett, M. C. Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stud. 230, 407–467 (2017).

    Article 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 227, 955–966 (2020).

    Article 

    Google Scholar
     

  • Meng, Y. et al. Environmental modulation of plant mycorrhizal traits in the global flora. Ecol. Lett. 26, 1862–1876 (2023).

    Article 

    Google Scholar
     

  • Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. N. Phytol. 217, 1213–1229 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Meeds, J. A. et al. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME J. 15, 1478–1489 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cheeke, T. E., Zheng, C., Koziol, L., Gurholt, C. R. & Bever, J. D. Sensitivity to AMF species is greater in late-successional than early-successional native or nonnative grassland plants. Ecology 100, e02855 (2019).

    Article 

    Google Scholar
     

  • Sikes, B. A., Powell, J. R. & Rillig, M. C. Deciphering the relative contributions of multiple functions within plant–microbe symbioses. Ecology 91, 1591–1597 (2010).

    Article 

    Google Scholar
     

  • Klironomos, J. N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003).

    Article 

    Google Scholar
     

  • Romero, F. et al. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Sci. Total Environ. 885, 163683 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Koziol, L. & Bever, J. D. Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology 96, 1768–1774 (2015).

    Article 

    Google Scholar
     

  • Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1, 116 (2018).

    Article 

    Google Scholar
     

  • Ramana, J. V., Tylianakis, J. M., Ridgway, H. J. & Dickie, I. A. Root diameter, host specificity and arbuscular mycorrhizal fungal community composition among native and exotic plant species. N. Phytol. 239, 301–310 (2023).

    Article 

    Google Scholar
     

  • Zobel, M., Koorem, K., Moora, M., Semchenko, M. & Davison, J. Symbiont plasticity as a driver of plant success. N. Phytol. 241, 2340–2352 (2024).

    Article 

    Google Scholar
     

  • Heklau, H., Schindler, N., Eisenhauer, N., Ferlian, O. & Bruelheide, H. Temporal variation of mycorrhization rates in a tree diversity experiment. Ecol. Evol. 13, e10002 (2023).

    Article 

    Google Scholar
     

  • Schaefer, E. A., Gehring, C. A., Phillips, R. P., Gadrat, E. & Karst, J. Variation of root functional traits indicates flexible below-ground economic strategies of the riparian tree species Populus fremontii. Funct. Ecol. 38, 2003–2014 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Graham, J. H. & Eissenstat, D. M. Field evidence for the carbon cost of citrus mycorrhizas. N. Phytol. 140, 103–110 (1998).

    Article 

    Google Scholar
     

  • Ma, X. et al. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Glob. Ecol. Biogeogr. 32, 1423–1434 (2023).

    Article 

    Google Scholar
     

  • Konvalinková, T., Püschel, D., Řezáčová, V., Gryndlerová, H. & Jansa, J. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419, 319–333 (2017).

    Article 

    Google Scholar
     

  • Li, M., Jordan, N. R., Koide, R. T., Yannarell, A. C. & Davis, A. S. Meta-analysis of crop and weed growth responses to arbuscular mycorrhizal fungi: implications for integrated weed management. Weed Sci. 64, 642–652 (2016).

    Article 

    Google Scholar
     

  • Nouri, E. et al. Phosphate suppression of arbuscular mycorrhizal symbiosis involves gibberellic acid signaling. Plant Cell Physiol. 62, 959–970 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guillen-Otero, T., Lee, S.-J., Hertel, D. & Kessler, M. Facultative mycorrhization in a fern (Struthiopteris spicant L. Weiss) is bound to light intensity. BMC Plant Biol. 24, 103 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jarratt-Barnham, E., Zarrabian, D. & Oldroyd, G. E. D. Symbiotic regulation: how plants seek salvation in starvation. Curr. Biol. 32, R46–R48 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184, 5527–5540.e18 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Borda, V., Reinhart, K. O., Ortega, M. G., Burni, M. & Urcelay, C. Roots of invasive woody plants produce more diverse flavonoids than non-invasive taxa, a global analysis. Biol. Invasions 24, 2757–2768 (2022).

    Article 

    Google Scholar
     

  • Tian, B. et al. Gene expression controlling signalling molecules within mutualistic associations of an invasive plant: an evolutionary perspective. J. Ecol. 112, 1818–1831 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. N. Phytol. 208, 280–293 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liang, S. et al. Positioning absorptive root respiration in the root economics space across woody and herbaceous species. J. Ecol. 111, 2710–2720 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, G., McCormack, M. L. & Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. https://doi.org/10.1111/1365-2745.12429 (2015).

  • Albornoz, F. E., Burgess, T. I., Lambers, H., Etchells, H. & Laliberté, E. Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient-acquisition strategies. J. Ecol. 105, 549–557 (2017).

    Article 

    Google Scholar
     

  • Becklin, K. M., Pallo, M. L. & Galen, C. Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. J. Ecol. 100, 343–351 (2012).

    Article 

    Google Scholar
     

  • Roche, M. D. et al. Negative effects of an allelopathic invader on AM fungal plant species drive community-level responses. Ecology 102, e03201 (2021).

    Article 

    Google Scholar
     

  • Veiga, R. S. L. et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36, 1926–1937 (2013).

    Article 

    Google Scholar
     

  • Fernandez, N. et al. Asymmetric interaction between two mycorrhizal fungal guilds and consequences for the establishment of their host plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.873204 (2022).

  • Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kohout, P. Biogeography of ericoid mycorrhiza. Ecol. Stud. 230, 179–193 (2017).

    Article 

    Google Scholar
     

  • Näsholm, T. et al. Boreal forest plants take up organic nitrogen. Nature 392, 914–916 (1998).

    Article 

    Google Scholar
     

  • Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Perotto, S., Daghino, S. & Martino, E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? N. Phytol. 220, 1141–1147 (2018).

    Article 

    Google Scholar
     

  • Hartnett, D. C., Hetrick, B. A. D., Wilson, G. W. T. & Gibson, D. J. Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J. Ecol. 81, 787–795 (1993).

    Article 

    Google Scholar
     

  • Collier, F. A. & Bidartondo, M. I. Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J. Ecol. 97, 950–963 (2009).

    Article 

    Google Scholar
     

  • Primieri, S., Magnoli, S. M., Koffel, T., Stürmer, S. L. & Bever, J. D. Perennial, but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia: a meta-analysis. N. Phytol. 233, 505–514 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition. Funct. Ecol. 32, 1168–1179 (2018).

    Article 

    Google Scholar
     

  • Zhang, K., Zentella, R., Burkey, K. O., Liao, H.-L. & Tisdale, R. H. Long-term tropospheric ozone pollution disrupts plant–microbe–soil interactions in the agroecosystem. Glob. Change Biol. 30, e17215 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Puschel, D. et al. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00390 (2017).

  • Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637 (2019).

    Article 

    Google Scholar
     

  • Frew, A. et al. Plant herbivore protection by arbuscular mycorrhizas: a role for fungal diversity? N. Phytol. 233, 1022–1031 (2022).

    Article 

    Google Scholar
     

  • Frew, A. et al. Herbivory-driven shifts in arbuscular mycorrhizal fungal community assembly: increased fungal competition and plant phosphorus benefits. N. Phytol. 241, 1891–1899 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A. & Pozo, M. J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38, 651–664 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Delavaux, C. S., Smith-Ramesh, L. M. & Kuebbing, S. E. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98, 2111–2119 (2017).

    Article 

    Google Scholar
     

  • Marx, D. H. Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu. Rev. Phytopathol. 10, 429–454 (1972).

    Article 
    CAS 

    Google Scholar
     

  • Laliberte, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. N. Phytol. 206, 507–521 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xing, Z. et al. Foliar herbivory-enhanced mycorrhization is associated with increased levels of lipids in root and root exudates. J. Ecol. 112, 701–716 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lekberg, Y. et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 12, 3484 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article 

    Google Scholar
     

  • Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Diekmann, M. Species indicator values as an important tool in applied plant ecology — a review. Basic Appl. Ecol. 4, 493–506 (2003).

    Article 

    Google Scholar
     

  • Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Botany 99, 967–985 (2007).

    Article 

    Google Scholar
     

  • Borgy, B. et al. Sensitivity of community-level trait–environment relationships to data representativeness: a test for functional biogeography. Glob. Ecol. Biogeogr. 26, 729–739 (2017).

    Article 

    Google Scholar
     

  • Doledec, S., Chessel, D. & Gimaret-Carpentier, C. Niche separation in community analysis: a new method. Ecology 81, 2914–2927 (2000).

    Article 

    Google Scholar
     

  • Peres-Neto, P. R., Dray, S. & ter Braak, C. J. F. Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography 40, 806–816 (2017).

    Article 

    Google Scholar
     

  • Niku, J., Hui, F. K. C., Taskinen, S. & Warton, D. I. gllvm: fast analysis of multivariate abundance data with generalized linear latent variable models in R. Methods Ecol. Evol. 10, 2173–2182 (2019).

    Article 

    Google Scholar
     

  • Toussaint, A. et al. Asymmetric patterns of global diversity among plants and mycorrhizal fungi. J. Veg. Sci. 31, 355–366 (2020).

    Article 

    Google Scholar
     

  • Zobel, M. et al. Ancient environmental DNA reveals shifts in dominant mutualisms during the late Quaternary. Nat. Commun. 9, 139 (2018).

    Article 

    Google Scholar
     

  • Maes, S. L. et al. Plant functional trait response to environmental drivers across European temperate forest understorey communities. Plant Biol. 22, 410–424 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weiher, E. et al. Advances, challenges and a developing synthesis of ecological community assembly theory. Philos. Trans. R. Soc. B Biol. Sci. 366, 2403–2413 (2011).

    Article 

    Google Scholar
     

  • Veresoglou, S. D., Xi, J. & Peñuelas, J. Mechanisms of coexistence: exploring species sorting and character displacement in woody plants to alleviate belowground competition. Ecol. Lett. 27, e14489 (2024).

    Article 

    Google Scholar
     

  • Zhang, E. et al. Mycorrhizal symbiosis increases plant phylogenetic diversity and regulates community assembly in grasslands. Ecol. Lett. 27, e14516 (2024).

    Article 

    Google Scholar
     

  • Barceló, M., van Bodegom, P. M. & Soudzilovskaia, N. A. Fine-resolution global maps of root biomass carbon colonized by arbuscular and ectomycorrhizal fungi. Sci. Data 10, 56 (2023).

    Article 

    Google Scholar
     

  • Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    Article 

    Google Scholar
     

  • Barceló, M., van Bodegom, P. M., Tedersoo, L., Olsson, P. A. & Soudzilovskaia, N. A. Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests. J. Ecol. 110, 1271–1282 (2022).

    Article 

    Google Scholar
     

  • Hawkins, H.-J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023).

    Article 

    Google Scholar
     

  • Martin, F. M. & van der Heijden, M. G. A. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. N. Phytol. 242, 1486–1506 (2024).

    Article 

    Google Scholar
     

  • Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).

    Article 

    Google Scholar
     

  • Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? N. Phytol. 157, 475–492 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Noreika, N. et al. Forest biomass, soil and biodiversity relationships originate from biogeographic affinity and direct ecological effects. Oikos 128, 1653–1665 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vasar, M. et al. Global soil microbiomes: a new frontline of biome-ecology research. Glob. Ecol. Biogeogr. 31, 1120–1132 (2022).

    Article 

    Google Scholar
     

  • Bueno, C. G. et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob. Ecol. Biogeogr. 26, 690–699 (2017).

    Article 

    Google Scholar
     

  • Kytoviita, M. M. Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol. Ecol. 53, 27–32 (2005).

    Article 

    Google Scholar
     

  • Gerz, M., Bueno, C. G., Ozinga, W. A., Zobel, M. & Moora, M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J. Ecol. 106, 254–264 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Poschlod, P. & WallisDeVries, M. F. The historical and socio-economic perspective of calcareous grasslands — lessons from the distant and recent past. Biol. Conserv. 104, 361–376 (2002).

    Article 

    Google Scholar
     

  • Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in Central Europe — a review. Grass Forage Sci. 68, 345–363 (2013).

    Article 

    Google Scholar
     

  • Večeřa, M. et al. Decoupled phylogenetic and functional diversity in European grasslands. Preslia 95, 413–445 (2023).

    Article 

    Google Scholar
     

  • Lepik, M. et al. The nitrogen-fixing potential of plant communities depends on climate and land management. J. Biogeogr. 50, 591–601 (2023).

    Article 

    Google Scholar
     

  • Strullu-Derrien, C., Selosse, M.-A., Kenrick, P. & Martin, F. M. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. N. Phytol. 220, 1012–1030 (2018).

    Article 

    Google Scholar
     

  • Bredenkamp, G. J., Spada, F. & Kazmierczak, E. On the origin of northern and southern hemisphere grasslands. Plant Ecol. 163, 209–229 (2002).

    Article 

    Google Scholar
     

  • Stromberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tichý, L. et al. Ellenberg-type indicator values for European vascular plant species. J. Veg. Sci. 34, e13168 (2023).

    Article 

    Google Scholar
     

  • Lutz, S. et al. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat. Microbiol. 8, 2277–2289 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article 

    Google Scholar
     

  • Sabatini, F. M. et al. sPlotOpen — an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).

    Article 

    Google Scholar
     

  • Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K. & McGlinn, D. J. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Naturalist 188, E113–E125 (2016).

    Article 

    Google Scholar
     

  • Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356, eabd4501 (2017).

    Article 

    Google Scholar
     

  • Tedersoo, L. & Smith, M. E. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27, 83–99 (2013).

    Article 

    Google Scholar
     

  • Leopold, D. R. Ericoid fungal diversity: challenges and opportunities for mycorrhizal research. Fungal Ecol. 24, 114–123 (2016).

    Article 

    Google Scholar
     

  • Li, T., Yang, W., Wu, S., Selosse, M.-A. & Gao, J. Progress and prospects of mycorrhizal fungal diversity in orchids. Front. Plant Sci. 12, 646325 (2021).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    A curated soil fungal dataset to advance fungal ecology and conservation...

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).Article  ADS  ...
    Biodiversity
    13
    minutes

    Curated global occurrence dataset of the insect order Zoraptera

    To incorporate all species currently classified in this insect order into the dataset, the most recent comprehensive catalog of Zoraptera was utilized17. Subsequently...
    Biodiversity
    6
    minutes

    Multi-modal Language models in bioacoustics with zero-shot transfer: a case study

    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348 (6232), 336–340 (2015).Article  ADS  ...
    Biodiversity
    10
    minutes

    Ecological novelty is the new norm on our planet

    Kerr, M. R. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-025-02662-2 (2025).Article  ...
    Biodiversity
    0
    minutes
    spot_imgspot_img