The species distribution model based on the random forest algorithm reveals the distribution patterns of Neophocaena asiaeorientalis


  • Andrewartha, H. G. & Birch., L. C. The distribution and abundance of animals. Sci. (New York N Y). 121, 389–390. https://doi.org/10.1126/science.121.3142.389.b (1955).

    Article 
    MATH 

    Google Scholar
     

  • Boyce, M. S. et al. Can habitat selection predict abundance? J. Anim. Ecol. 85. REVIEW, 11–20. https://doi.org/10.1111/1365-2656.12359 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Wei, J., Niu, M., Zhang, H., Cai, B. & Ji, W. Global potential distribution of invasive species Pseudococcus viburni (Hemiptera: Pseudococcidae) under climate change. Insects 15, 195. https://doi.org/10.3390/insects15030195 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kafash, A., Ashrafi, S. & Yousefi, M. Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation. Environ. Sci. Pollut. Res. Int. 29, 25881–25891. https://doi.org/10.1007/s11356-021-17412-7 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Bosso, L. et al. Integrating citizen science and Spatial ecology to inform management and conservation of the Italian seahorses. Ecol. Inf. 79, 102402. https://doi.org/10.1016/j.ecoinf.2023.102402 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Rêgo, M., Del-Rio, G. & Brumfield, R. Subspecies-level distribution maps for birds of the Amazon basin and adjacent areas. J. Biogeogr. 51 https://doi.org/10.1111/jbi.14718 (2023).

  • Ahmed, A. S., Bekele, A., Kasso, M. & Atickem, A. Impact of climate change on the distribution and predicted habitat suitability of two fruit bats (Rousettus aegyptiacus and Epomophorus labiatus) in Ethiopia: implications for conservation. Ecol. Evol. 13, e10481. https://doi.org/10.1002/ece3.10481 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Austin, M. P. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Model. 157, 101–118. https://doi.org/10.1016/S0304-3800(02)00205-3 (2002).

    Article 
    MATH 

    Google Scholar
     

  • Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448–16460. https://doi.org/10.1038/s41598-021-96047-7 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, T., Gradus, J. L. & Rosellini, A. J. Supervised machine learning: A brief primer. Behav. Ther. 51, 675–687. https://doi.org/10.1016/j.beth.2020.05.002 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mi, C., Huettmann, F., Guo, Y., Han, X. & Wen, L. Why choose random forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 5, e2849. https://doi.org/10.7717/peerj.2849 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huettmann, F. et al. A super SDM (species distribution model) ‘in the cloud’ for better habitat-association inference with a ‘big data’ application of the great Gray Owl for Alaska. Sci. Rep. 14, 7213. https://doi.org/10.1038/s41598-024-57588-9 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Steiner, M., Huettmann, F., Bryans, N. & Barker, B. With super SDMs (machine learning, open access big data, and the cloud) towards more holistic global squirrel hotspots and coldspots. Sci. Rep. 14, 5204. https://doi.org/10.1038/s41598-024-55173-8 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mechenich, M. F. & Žliobaitė, I. Eco-ISEA3H, a machine learning ready Spatial database for ecometric and species distribution modeling. Sci. Data. 10, 77. https://doi.org/10.1038/s41597-023-01966-x (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bonannella, C. et al. Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using Spatiotemporal machine learning. PeerJ 10, e13728. https://doi.org/10.7717/peerj.13728 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aarts, B. G. W., Van Den Brink, F. W. B. & Nienhuis, P. H. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: the transversal floodplain gradient. River Res. Appl. 20, 3–23. https://doi.org/10.1002/rra.720 (2004).

    Article 
    MATH 

    Google Scholar
     

  • Wasehun, E. T., Beni, H., Di Vittorio, C. A. & L. & UAV and satellite remote sensing for inland water quality assessments: A literature review. Environ. Monit. Assess. 196, 277. https://doi.org/10.1007/s10661-024-12342-6 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, Z., Churnside, J., Mao, Z., Wu, S. & Zibordi, G. Active and passive optical remote sensing of the aquatic environment: Introduction to the feature issue. Appl. Opt. 59, Aps1–aps2. https://doi.org/10.1364/ao.392549 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).

    Article 
    MATH 

    Google Scholar
     

  • Zhao, X. et al. Abundance and conservation status of the Yangtze finless porpoise in the Yangtze river, China. Biol. Conserv. 141, 3006–3018. https://doi.org/10.1016/j.biocon.2008.09.005 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Huang, J. et al. Population survey showing hope for population recovery of the critically endangered Yangtze finless porpoise. Biol. Conserv. 241, 108315. https://doi.org/10.1016/j.biocon.2019.108315 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Chen, M. et al. Parentage-Based group composition and dispersal pattern studies of the Yangtze finless porpoise population in Poyang lake. Int. J. Mol. Sci. 17 https://doi.org/10.3390/ijms17081268 (2016).

  • Jiang-Long, Q. et al. Population and distribution characteristics of Yangtze finless porpoise in JiangxiI waters during the dry season. Acta Hydrobiol. Sin. 47, 1701–1708. https://doi.org/10.7541/2023.2022.0503 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Liu, X. et al. Seasonal Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) movements in the Poyang lake, China: Implications on flexible management for aquatic animals in fluctuating freshwater ecosystems. Sci. Total Environ. 807, 150782. https://doi.org/10.1016/j.scitotenv.2021.150782 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mei, Z. et al. Mitigating the effect of shipping on freshwater cetaceans: The case study of the Yangtze finless porpoise. Biol. Conserv. 257, 109132. https://doi.org/10.1016/j.biocon.2021.109132 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Huang, S. L. et al. Saving the Yangtze finless porpoise: Time is rapidly running out. Biol. Conserv. 210, 40–46. https://doi.org/10.1016/j.biocon.2016.05.021 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Rongcheng, R. et al. Population structure and growth status of Yangtze finless porpoise in the sand pits waters of Southern Songmen mountain, Poyang lake. J. Shanghai Ocean. Univ. 32, 1237–1244. https://doi.org/10.12024/jsou (2023).

    Article 
    MATH 

    Google Scholar
     

  • Rongcheng, R. et al. Analysis of the population genetics of the Yangtze finless porpoise population in the Poyang lake basin: Insight of conservation recommendations. 34, e4145, (2024). https://doi.org/10.1002/aqc.4145

  • Leng, M. et al. Assessment of Water Eutrophication at Bao’an Lake in the Middle Reaches of the Yangtze River Based on Multiple Methods. Int. J. Environ. Res. Public. Health. 20 https://doi.org/10.3390/ijerph20054615 (2023).

  • Li, W. et al. A real-time passive acoustic monitoring system to detect Yangtze finless porpoise clicks in Ganjiang river, China. Front. Mar. Sci. 9 https://doi.org/10.3389/fmars.2022.883774 (2022).

  • Duan, P. X. et al. Anthropogenic activity, hydrological regime, and light level jointly influence Temporal patterns in biosonar activity of the Yangtze finless porpoise at the junction of the Yangtze river and Poyang lake, China. Zoological Res. 44, 919–931. https://doi.org/10.24272/j.issn.2095-8137.2022.504 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).

    Article 
    MATH 

    Google Scholar
     

  • Bosso, L. et al. The rise and fall of an Alien: why the successful colonizer Littorina saxatilis failed to invade the mediterranean sea. Biol. Invasions. 24, 3169–3187. https://doi.org/10.1007/s10530-022-02838-y (2022).

    Article 
    MATH 

    Google Scholar
     

  • Hu, Z. M. et al. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol. Ecol. 30, 3840–3855. https://doi.org/10.1111/mec.15996 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, Z. T., Duan, P. X., Akamatsu, T., Wang, K. X. & Wang, D. Temporal and Spatial biosonar activity of the recently established uppermost Yangtze finless porpoise population downstream of the Gezhouba dam: correlation with hydropower cascade development, shipping, hydrological regime, and light intensity. Ecol. Evol. 14, e11346. https://doi.org/10.1002/ece3.11346 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Habitat configuration of the Yangtze finless porpoise in Poyang lake under a shifting hydrological regime. Sci. Total Environ. 838, 155954. https://doi.org/10.1016/j.scitotenv.2022.155954 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mei, Z. et al. Habitat preference of the Yangtze finless porpoise in a minimally disturbed environment. Ecol. Model. 353, 47–53. https://doi.org/10.1016/j.ecolmodel.2016.12.020 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Manel, S., Williams, H. C. & Ormerod, S. J. Evaluating presence–absence models in ecology: The need to account for prevalence. J. Appl. Ecol. 38, 921–931. https://doi.org/10.1046/j.1365-2664.2001.00647.x (2001).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, X. et al. Effects of fish community on occurrences of Yangtze finless porpoise in confluence of the Yangtze and Wanhe rivers. Environ. Sci. Pollut. Res. 22, 9524–9533. https://doi.org/10.1007/s11356-015-4102-x (2015).

    Article 
    MATH 

    Google Scholar
     

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? 3, 327–338, (2012). https://doi.org/10.1111/j.2041-210X.2011.00172.x

  • Wei, Z. et al. Population size, behavior, movement pattern and protection of Yangtze finless porpoise at Balijiang section of the Yangtze river. Resour. Environ. Yangtze Basin. 11, 427–432 (2002).

    MATH 

    Google Scholar
     

  • Wang, Z. T. et al. Underwater noise pollution in China’s Yangtze river critically endangers Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis). Environ. Pollut. 262, 114310. https://doi.org/10.1016/j.envpol.2020.114310 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brough, T. E., Rayment, W. J., Slooten, L. & Dawson, S. Prey and habitat characteristics contribute to hotspots of distribution for an endangered coastal Dolphin. 10, (2023). https://doi.org/10.3389/fmars.2023.1204943

  • Wang, Z., Akamatsu, T., Wang, K. & Wang, D. The diel rhythms of biosonar behavior in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the Port of the Yangtze river: the correlation between prey availability and boat traffic. PloS One. 9, e97907. https://doi.org/10.1371/journal.pone.0097907 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crossin, G. T. et al. Acoustic telemetry and fisheries management. Ecol. Appl. 27, 1031–1049. https://doi.org/10.1002/eap.1533 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Minamoto, T. & Environmental DNA analysis for macro-organisms: Species distribution and more. DNA Res. 29 https://doi.org/10.1093/dnares/dsac018 (2022).



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img