Thresholds of functional trait diversity driven by land use intensification


  • Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).

    Article 

    Google Scholar
     

  • Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Article 

    Google Scholar
     

  • Scheffer, M., Carpenter, S., Dakos, V. & van Nes, E. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).

    Article 

    Google Scholar
     

  • van Nes, E. H. et al. What do you mean, ‘tipping point’? Trends Ecol. Evol. 31, 902–904 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).

    Article 

    Google Scholar
     

  • Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balvanera, P. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. BioScience 64, 49–57 (2014).

    Article 

    Google Scholar
     

  • Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Article 

    Google Scholar
     

  • Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Chang. Biol. 14, 1125–1140 (2008).

    Article 

    Google Scholar
     

  • McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Maire, V. et al. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol. 196, 497–509 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Article 

    Google Scholar
     

  • Gross, N. et al. Unveiling ecological assembly rules from commonalities in trait distributions. Ecol. Lett. 24, 1668–1680 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Enquist, B. J. et al. in Advances in Ecological Research Vol. 52 (eds Pawar, S. et al.) 249–318 (Academic, 2015).

  • Enquist, B. J. et al. Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Glob. Ecol. Biogeogr. 26, 1357–1373 (2017).

    Article 

    Google Scholar
     

  • Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Bagousse-Pinguet, Y. et al. Functional rarity and evenness are key facets of biodiversity to boost multifunctionality. Proc. Natl Acad. Sci. USA 118, e2019355118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Article 

    Google Scholar
     

  • Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

    Article 

    Google Scholar
     

  • Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    Article 

    Google Scholar
     

  • Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).

    Article 

    Google Scholar
     

  • Gross, N. et al. Linking individual response to biotic interactions with community structure: a trait-based framework. Funct. Ecol. 23, 1167–1178 (2009).

    Article 

    Google Scholar
     

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Le Bagousse-Pinguet, Y. et al. Traits of neighbouring plants and space limitation determine intraspecific trait variability in semi-arid shrublands. J. Ecol. 103, 1647–1657 (2015).

    Article 

    Google Scholar
     

  • Munoz, F. et al. ecolottery: simulating and assessing community assembly with environmental filtering and neutral dynamics in R. Methods Ecol. Evol. 9, 693–703 (2018).

    Article 

    Google Scholar
     

  • Danet, A., Anthelme, F., Gross, N. & Kéfi, S. Effects of indirect facilitation on functional diversity, dominance and niche differentiation in tropical alpine communities. J. Veg. Sci. 29, 835–846 (2018).

    Article 

    Google Scholar
     

  • Liu, C., Baird, A. S. & He, N. Optimal community assembly related to leaf economic- hydraulic-anatomical traits. Front. Plant Sci. 11, 341 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cullen, A. C. & Frey, H. C. Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs (Springer Science & Business, 1999).

  • Gotelli, N. J. & Entsminger, G. L. Swap and fill algorithms in null model analysis: rethinking the knight’s tour. Oecologia 129, 281–291 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Saiz, H., Le Bagousse-Pinguet, Y., Gross, N. & Maestre, F. T. Intransitivity increases plant functional diversity by limiting dominance in drylands worldwide. J. Ecol. 107, 240–252 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347 (1973).

    Article 

    Google Scholar
     

  • Bazzichetto, M. et al. Biodiversity promotes resistance but dominant species shape recovery of grasslands under extreme drought. J. Ecol. 112, 1087–1100 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Blüthgen, N. et al. Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat. Commun. 7, 10697 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moravec, V. et al. Europe under multi-year droughts: how severe was the 2014–2018 drought period? Environ. Res. Lett. 16, 034062 (2021).

    Article 

    Google Scholar
     

  • Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).

    Article 

    Google Scholar
     

  • Vogel, A., Scherer-Lorenzen, M. & Weigelt, A. Grassland resistance and resilience after drought depends on management intensity and species richness. PLoS ONE 7, e36992 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stampfli, A., Bloor, J. M. G., Fischer, M. & Zeiter, M. High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. Glob. Chang. Biol. 24, 2021–2034 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature 611, 301–305 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saiz, H. et al. Land use intensification results in abrupt transitions between contrasting grassland states. Preprint at Authorea https://doi.org/10.22541/au.167025017.79918858/v1 (2022).

  • Vertès, F., Delaby, L., Klumpp, K. & Bloor, J. in Agroecosystem Diversity (eds Lemaire, G. et al.) 15–34 (Academic, 2019); https://doi.org/10.1016/B978-0-12-811050-8.00002-9

  • Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl Acad. Sci. USA 117, 28140–28149 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allart, L. et al. Species richness: a pivotal factor mediating the effects of land use intensification and climate on grassland multifunctionality. J. Appl. Ecol. 61, 1053–1066 (2024).

    Article 

    Google Scholar
     

  • Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Götzenberger, L. et al. Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol. Rev. https://doi.org/10.1111/j.1469-185X.2011.00187.x (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Gross, N. et al. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature 632, 808–814 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buisson, E., Archibald, S., Fidelis, A. & Suding, K. N. Ancient grasslands guide ambitious goals in grassland restoration. Science 377, 594–598 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 7, e36387 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865578 (2020).

  • Bolliger, R., Prati, D. & Fischer, M. Vegetation Records for Grassland EPs, 2008 – 2020. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de//ddm/data/Showdata/27386?version=2 (2021).

  • Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Le Bagousse-Pinguet, Y. et al. Testing the environmental filtering concept in global drylands. J. Ecol. 105, 1058–1069 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Májeková, M. et al. Evaluating functional diversity: missing trait data and the importance of species abundance structure and data transformation. PLoS ONE 11, e0149270 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cristelli, M., Zaccaria, A. & Pietronero, L. Universal relation between skewness and kurtosis in complex dynamics. Phys. Rev. E 85, 066108 (2012).

    Article 

    Google Scholar
     

  • Loranger, J., Munoz, F., Shipley, B. & Violle, C. What makes trait–abundance relationships when both environmental filtering and stochastic neutral dynamics are at play? Oikos 127, 1735–1745 (2018).

    Article 

    Google Scholar
     

  • Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).

    Article 

    Google Scholar
     

  • Schamp, B. S., Chau, J. & Aarssen, L. W. Dispersion of traits related to competitive ability in an old-field plant community. J. Ecol. 96, 204–212 (2008).

    Article 

    Google Scholar
     

  • Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).

    Article 

    Google Scholar
     

  • Rolhauser, A. G. & Pucheta, E. Directional, stabilizing, and disruptive trait selection as alternative mechanisms for plant community assembly. Ecology 98, 668–677 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Berdugo, M., Kéfi, S., Soliveres, S. & Maestre, F. T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 0003 (2017).

    Article 

    Google Scholar
     

  • Münkemüller, T. et al. Dos and don’ts when inferring assembly rules from diversity patterns. Glob. Ecol. Biogeogr. 29, 1212–1229 (2020).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    A weird group of boronias puzzled botanists for decades. Now we’ve...

    Boronias, known for their showy flowers and strong scent, are a quintessential part of the Australian bush. They led...
    Biodiversity
    4
    minutes

    Biodiversity change under human depopulation in Japan

    Study areaAlongside other countries, over the past 100 years, significant loss of natural and semi-natural habitat has occurred in Japan, mainly because of...
    Biodiversity
    13
    minutes

    Status of endangered large prey predators following civil unrest in a...

    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, 1400253 (2015).ADS  ...
    Biodiversity
    8
    minutes

    Ancient fossils show how the last mass extinction forever scrambled the...

    About 66 million years ago – perhaps on a downright unlucky day in May – an asteroid smashed into...
    Biodiversity
    6
    minutes
    spot_imgspot_img