Trait mediation explains decadal distributional shifts for a wide range of insect taxa

[ad_1]

  • Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of aphid and moth abundances across Great Britain. Insect Conserv. Divers. 13, 115–126 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blumgart, D., Botham, M. S., Menéndez, R. & Bell, J. R. Moth declines are most severe in broadleaf woodlands despite a net gain in habitat availability. Insect Conserv. Divers. 15, 496–509 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks, D. R. et al. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Ecol. 49, 1009–1019 (2012).


    Google Scholar
     

  • Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Edwards, C. B. et al. Rapid butterfly declines across the United States during the 21st century. Science 387, 1090–1094 (2025).

    PubMed 

    Google Scholar
     

  • Mancini, F. et al. Invertebrate biodiversity continues to decline in cropland. Proc. R. Soc. B Biol. Sci. 290, 20230897 (2023).


    Google Scholar
     

  • Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature https://doi.org/10.1038/s41586-022-04644-x (2022).

  • Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valtonen, A. et al. Long-term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 86, 730–738 (2017).

    PubMed 

    Google Scholar
     

  • Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).

    ADS 

    Google Scholar
     

  • Evans, L. C., Burgess, M. D., Potts, S. G., Kunin, W. E. & Oliver, T. H. Population links between an insectivorous bird and moths disentangled through national-scale monitoring data. Ecol. Lett. 27, e14362 (2024).

    PubMed 

    Google Scholar
     

  • Martay, B. et al. Aerial insect biomass, but not phenological mismatch, is associated with chick survival of an insectivorous bird. Ibis 165, 790–807 (2023).


    Google Scholar
     

  • Møller, A. P. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Long-term insect censuses capture progressive loss of ecosystem functioning in East Asia. Sci. Adv. 9, eade9341 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed 

    Google Scholar
     

  • Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. 118, e2023989118 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardoso, M. C. & Gonçalves, R. B. Reduction by half: The impact on bees of 34 years of urbanization. Urban Ecosyst. 21, 943–949 (2018).


    Google Scholar
     

  • Martins, A. C., Gonçalves, R. B. & Melo, G. A. R. Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. Zool. Curitiba 30, 157–176 (2013).


    Google Scholar
     

  • Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proc. Natl. Acad. Sci. 119, e2203385119 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez, A. C., Jones, S. K., Purvis, A., Estrada-Carmona, N. & De Palma, A. Landscape complexity and functional groups moderate the effect of diversified farming on biodiversity: A global meta-analysis. Agric. Ecosyst. Environ. 332, 107933 (2022).


    Google Scholar
     

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonçalves-Souza, T. et al. Species turnover does not rescue biodiversity in fragmented landscapes. Nature 1–5 https://doi.org/10.1038/s41586-025-08688-7 (2025).

  • Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).

    PubMed 

    Google Scholar
     

  • Gossner, M. M., Menzel, F. & Simons, N. K. Less overall, but more of the same: drivers of insect population trends lead to community homogenization. Biol. Lett. 19, 20230007 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, J. E., Rodenhouse, N. L. & Holmes, R. T. Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming. Biol. Conserv. 240, 108219 (2019).


    Google Scholar
     

  • Ma, G., Rudolf, V. H. W. & Ma, C. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Change Biol. 21, 1794–1808 (2015).

    ADS 

    Google Scholar
     

  • Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Ganuza, C. et al. Interactive effects of climate and land use on pollinator diversity differ among taxa and scales. Sci. Adv. 8, eabm9359 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suggitt, A. J. et al. Linking climate warming and land conversion to species’ range changes across Great Britain. Nat. Commun. 14, 6759 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montràs-Janer, T. et al. Anthropogenic climate and land-use change drive short- and long-term biodiversity shifts across taxa. Nat. Ecol. Evol. 1–13 https://doi.org/10.1038/s41559-024-02326-7. (2024)

  • Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Change 5, 941–945 (2015).

    ADS 

    Google Scholar
     

  • Bakker, F. M., Aldershof, S. A. & Šmilauer, P. Not all insects decline: 30-years of comprehensive sampling show increasing and decreasing arthropod population trends in Eu-Farmland. SSRN Scholarly Paper at https://doi.org/10.2139/ssrn.4011758 (2022).

  • Bowler, D. E. et al. Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany. Divers. Distrib. 27, 1353–1366 (2021).


    Google Scholar
     

  • Evans, L. C. et al. Bioclimatic context of species’ populations determines community stability. Glob. Ecol. Biogeogr. 31, 1542–1555 (2022).


    Google Scholar
     

  • Neff, F. et al. Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends. Nat. Commun. 13, 7611 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mcgill, B., Enquist, B., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 

    Google Scholar
     

  • Aguirre-Gutiérrez, J. et al. Functional traits help to explain half-century long shifts in pollinator distributions. Sci. Rep. 6, 24451 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comont, R. F. et al. Using biological traits to explain ladybird distribution patterns. J. Biogeogr. 39, 1772–1781 (2012).


    Google Scholar
     

  • Coulthard, E., Norrey, J., Shortall, C. & Harris, W. E. Ecological traits predict population changes in moths. Biol. Conserv. 233, 213–219 (2019).


    Google Scholar
     

  • Marrec, R. et al. Functional traits of carabid beetles reveal seasonal variation in community assembly in annual crops. bioRxiv. https://doi.org/10.1101/2021.02.04.429696 (2021).

  • Powney, G. D., Cham, S. S. A., Smallshire, D. & Isaac, N. J. B. Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ 3, e1410 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckmann, B. C. et al. Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change. PLOS ONE 10, e0130488 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tordoff, G. M. et al. Inconsistent results from trait-based analyses of moth trends point to complex drivers of change. Biodivers. Conserv. https://doi.org/10.1007/s10531-022-02469-8 (2022).

  • Bell, J. R. et al. Do functional traits improve prediction of predation rates for a disparate group of aphid predators?. Bull. Entomol. Res. 98, 587–597 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Jowett, K. et al. Species matter when considering landscape effects on carabid distributions. Agric. Ecosyst. Environ. 285, 106631 (2019).


    Google Scholar
     

  • Wagner DL. Insect Declines in the Anthropocene. Annu Rev Entomol. 65, 457–480 (2020).

  • Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).

    PubMed 

    Google Scholar
     

  • Brown, A. M. et al. The fourth-corner solution – using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).


    Google Scholar
     

  • Bourhis, Y., Bell, J. R., Shortall, C. R., Kunin, W. E. & Milne, A. E. Explainable neural networks for trait-based multispecies distribution modelling—A case study with butterflies and moths. Methods Ecol. Evol. 14, 1531–1542 (2023).


    Google Scholar
     

  • Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. ArXiv170507874 Cs Stat (2017).

  • Dennis, E. B. et al. Trends and indicators for quantifying moth abundance and occupancy in Scotland. J. Insect Conserv. 23, 369–380 (2019).


    Google Scholar
     

  • Yazdanian, M. et al. Ecological and life-history traits predict temporal trends in biomass of boreal moths. Insect Conserv. Divers. 16, 600–615 (2023).


    Google Scholar
     

  • Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 4455 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pöyry, J. et al. Climate-induced increase of moth multivoltinism in boreal regions. Glob. Ecol. Biogeogr. 20, 289–298 (2011).


    Google Scholar
     

  • Dyck, H. V., Bonte, D., Puls, R., Gotthard, K. & Maes, D. The lost generation hypothesis: could climate change drive ectotherms into a developmental trap?. Oikos 124, 54–61 (2015).

    ADS 

    Google Scholar
     

  • Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).


    Google Scholar
     

  • Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 16, 222–230 (2018).


    Google Scholar
     

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sunde, J. et al. Century-long butterfly range expansions in northern Europe depend on climate, land use and species traits. Commun. Biol. 6, 1–14 (2023).


    Google Scholar
     

  • Forsman, A., Betzholtz, P.-E. & Franzén, M. Faster poleward range shifts in moths with more variable colour patterns. Sci. Rep. 6, 36265 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawson, D. A. & Rands, S. A. The effects of rainfall on plant–pollinator interactions. Arthropod-Plant Interact. 13, 561–569 (2019).


    Google Scholar
     

  • Bowler, D. E. et al. Idiosyncratic trends of woodland invertebrate biodiversity in Britain over 45 years. Insect Conserv. Divers. 16, 776–789 (2023).


    Google Scholar
     

  • Jonsen, I. D. & Fahrig, L. Response of generalist and specialist insect herbivores to landscape spatial structure. Landsc. Ecol. 12, 185–197 (1997).


    Google Scholar
     

  • Batáry, P. et al. Responses of grassland specialist and generalist beetles to management and landscape complexity. Divers. Distrib. 13, 196–202 (2007).


    Google Scholar
     

  • Botham, M. S. et al. Lepidoptera communities across an agricultural gradient: how important are habitat area and habitat diversity in supporting high diversity?. J. Insect Conserv. 19, 403–420 (2015).


    Google Scholar
     

  • Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Marja, R., Tscharntke, T. & Batáry, P. Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance – A meta-analysis. Agric. Ecosyst. Environ. 326, 107822 (2022).


    Google Scholar
     

  • Rennie, S. et al. UK Environmental Change Network (ECN) carabid beetle data: 1992-2015. NERC EDS Environmental Information Data Centre https://doi.org/10.5285/8385F864-DD41-410F-B248-028F923CB281 (2017).

  • King, G. & Zeng, L. Logistic Regression in Rare Events Data. Political Analysis 9, 137–163 (2001).

  • Gillespie, L. E., Ruffley, M. & Exposito-Alonso, M. Deep learning models map rapid plant species changes from citizen science and remote sensing data. Proc. Natl. Acad. Sci. 121, e2318296121 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollis, D., McCarthy, M., Kendon, M., Legg, T. & Simpson, I. HadUK-Grid—A new UK dataset of gridded climate observations. Geosci. Data J. 6, 151–159 (2019).

    ADS 

    Google Scholar
     

  • Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2020 (25m rasterised land parcels, GB). https://doi.org/10.5285/6c22cf6e-b224-414e-aa85-900325baedbd (2021).

  • Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2017 (25m rasterised land parcels, GB). NERC Environmental Information Data Centre https://doi.org/10.5285/499212CD-D64A-43BA-B801-95402E4D4098 (2020).

  • Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2018 (25m rasterised land parcels, GB). NERC Environmental Information Data Centre https://doi.org/10.5285/25C6451B-5C88-40DA-9A63-C3EC473E4874 (2020).

  • Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2019 (25m rasterised land parcels, GB). NERC Environmental Information Data Centre https://doi.org/10.5285/F15289DA-6424-4A5E-BD92-48C4D9C830CC (2020).

  • Morton, R. D., Marston, C. G., O’Neil, A. W. & Rowland, C. S. Land Cover Map 2020 (25m rasterised land parcels, GB). NERC EDS Environmental Information Data Centre https://doi.org/10.5285/6C22CF6E-B224-414E-AA85-900325BAEDBD (2021).

  • Rowland, C. S., Marston, C. G., Morton, R. D. & O’Neil, A. W. Land Cover Map 1990 (25m raster, GB) v2. NERC Environmental Information Data Centre https://doi.org/10.5285/1BE1912A-916E-42C0-98CC-16460FAC00E8 (2020).

  • Riitters, K. H. et al. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 10, 23–39 (1995).


    Google Scholar
     

  • LaGro, J. Assessing Patch Shape in Landscape Mosaics. Photogrammetric Engineering & Remote Sensing 57, 285–293 (1991).

  • Moore, R. V., Morris, D. G. & Flavin R W. Sub-Set of UK Digital 1:50,000 Scale River Centreline Network. (1994).

  • Cook, P. M. et al. Traits data for the butterflies and macro-moths of Great Britain and Ireland. Ecology 103, e3670 (2022).

    PubMed 

    Google Scholar
     

  • Middleton-Welling, J. et al. A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea. Sci. Data 7, 351 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powney, G. et al. Morphological and Geographical Traits of the British Odonata. Biodivers. Data J. 2, e1041 (2014).


    Google Scholar
     

  • Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716–725 (2012).

    ADS 

    Google Scholar
     

  • Tikhonov, G. et al. Joint species distribution modelling with the r-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).


    Google Scholar
     

  • Bourhis, Y., Bell, J. R., van den Bosch, F. & Milne, A. E. Artificial neural networks for monitoring network optimisation—a practical example using a national insect survey. Environ. Model. Softw. 135, 104925 (2021).


    Google Scholar
     

  • Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. in Advances in Neural Information Processing Systems vol. 30 (Curran Associates, Inc., 2017).

  • Osband, I., Blundell, C., Pritzel, A. & Van Roy, B. Deep Exploration via Bootstrapped DQN. in Advances in Neural Information Processing Systems vol. 29 (Curran Associates, Inc., 2016).

  • Chicco, D., Tötsch, N. & Jurman, G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 14, 13 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).


    Google Scholar
     

  • Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed 

    Google Scholar
     

  • Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).

    ADS 

    Google Scholar
     

  • Boyd, R. J. et al. ROBITT: A tool for assessing the risk-of-bias in studies of temporal trends in ecology. Methods Ecol. Evol. 13, 1497–1507 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyd, R. J., Powney, G. D. & Pescott, O. L. We need to talk about nonprobability samples. https://doi.org/10.48550/arXiv.2210.07298 (2022).

  • Hill, M. O. Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).


    Google Scholar
     

  • Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).

    ADS 

    Google Scholar
     

  • Rocchini, D. et al. A quixotic view of spatial bias in modelling the distribution of species and their diversity. Npj Biodivers. 2, 1–11 (2023).


    Google Scholar
     

  • VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).


    Google Scholar
     

  • Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).


    Google Scholar
     

  • Bourhis, Y. Trait-based multi-species distribution model using keras—a minimal working example. https://doi.org/10.5281/ZENODO.15572920 (2025).

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes

    Origin and crop type affect the biodiversity pressures of fruits and...

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Chapman, A....
    Biodiversity
    0
    minutes
    spot_imgspot_img