Un(der)explored links between plant diversity and particulate and mineral-associated organic matter in soil


  • Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinbeiss, S. et al. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob. Chang. Biol. 14, 2937–2949 (2008).

    Article 

    Google Scholar
     

  • Chen, S. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl Acad. Sci. USA 115, 4027–4032 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature 618, 94–101 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95, 167–183 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Chang. Biol. 27, 1097–1110 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jandt, U. et al. More losses than gains during one century of plant biodiversity change in Germany. Nature 611, 512–518 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

    Article 

    Google Scholar
     

  • Bai, Y. & Cotrufo, M. F. Grassland soil carbon sequestration: current understanding, challenges. Solutions 608, 603–608 (2022).


    Google Scholar
     

  • Wooliver, R., Kivlin, S. N. & Jagadamma, S. Links among crop diversification, microbial diversity, and soil organic carbon: mini review and case studies. Front. Microbiol. 13, 854247 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenhauer, N. et al. A belowground perspective on the nexus between biodiversity change, climate change, and human well-being. J. Sustain. Agric. Environ. 3, 1–12 (2024).


    Google Scholar
     

  • Lavallee, J. M., Soong, J. L. & Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 26, 261–273 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Angst, G. et al. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nat. Commun. 14, 2967 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller, C. W. et al. Initial differentiation of vertical soil organic matter distribution and composition under juvenile beech (Fagus sylvatica L.) trees. Plant Soil 323, 111–123 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Bol, R., Poirier, N., Balesdent, J. & Gleixner, G. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Commun. Mass Spectrom. 23, 2551–2558 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 1–6 (2017).

    Article 

    Google Scholar
     

  • Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 1–33 (2018).

    Article 

    Google Scholar
     

  • Chenu, C. & Plante, A. T. F. T. Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the ‘primary organo-mineral complex’. Eur. J. Soil Sci. 57, 596–607 (2006).

    Article 

    Google Scholar
     

  • Tong, H. et al. Crop rotational diversity alters the composition of stabilized soil organic matter compounds in soil physical fractions. Can. J. Soil Sci. 103, 213–233 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jia, Y. et al. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biol. Biochem. 161, 108375 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sun, T. et al. General reversal of N- decomposition relationship during long- term decomposition in boreal and temperate forests Tao. Proc. Natl Acad. Sci. USA 121, e2401398121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E. & Six, J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Chang. Biol. 21, 3200–3209 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Glob. Chang. Biol. 19, 988–995 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Craig, M. E. et al. Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nat. Commun. 13, 1–10 (2022).

    Article 

    Google Scholar
     

  • Angst, G. et al. Stabilized microbial necromass in soil is more strongly coupled with microbial diversity than the bioavailability of plant inputs. Soil Biol. Biochem. 190, 109323 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X., Chen, H. Y. H., Searle, E. B., Chen, C. & Reich, P. B. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 4, 225–232 (2021).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports 7, 44641 (2017).

  • Zhang, Y., Peng, S., Chen, X. & Chen, H. Y. H. Plant diversity increases the abundance and diversity of soil fauna: a meta-analysis. Geoderma 411, 115694 (2022).

    Article 

    Google Scholar
     

  • Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influeced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y. et al. Enhanced stability of grassland soil temperature by plant diversity. Nat. Geosci. 17, 44–50 (2023).

    Article 

    Google Scholar
     

  • Joly, F.-X. et al. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. N. Phytol. 214, 1281–1293 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, C. et al. Plant species richness and functional groups have different effects on soil water content in a decade-long grassland experiment. J. Ecol. 107, 127–141 (2019).

    Article 

    Google Scholar
     

  • Leimer, S., Oelmann, Y., Wirth, C. & Wilcke, W. Time matters for plant diversity effects on nitrate leaching from temperate grassland. Agric. Ecosyst. Environ. 211, 155–163 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mueller, K. E., Hobbie, S. E., Tilman, D. & Reich, P. B. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Glob. Chang. Biol. 19, 1249–1261 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Beugnon, R. et al. Tree diversity effects on litter decomposition are mediated by litterfall and microbial processes. Oikos 2023, e09751 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Eisenhauer, N. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl Acad. Sci. USA 110, 6889–6894 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller, C. W. & Koegel-Knabner, I. Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol. Fertil. Soils 45, 347–359 (2009).

    Article 
    CAS 

    Google Scholar
     

  • von Lützow, M. et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183–2207 (2007).

    Article 

    Google Scholar
     

  • Sokol, N. W., Kuebbing, S. E., Karlsen-Ayala, E. & Bradford, M. A. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. N. Phytol. 221, 233–246 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Angst, G. et al. Conceptualizing soil fauna effects on labile and stabilized soil organic matter. Nat. Commun. 15, 5005 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebeling, A. et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9, e106529 (2014).

  • Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 1–7 (2019).


    Google Scholar
     

  • Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Li, C. et al. Crop diversity for yield increase. PLoS ONE 4, 1–6 (2009).

    Article 
    CAS 

    Google Scholar
     

  • van Ruijven, J. & Berendse, F. Diversity–productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Ruijven, J. & Berendse, F. Long-term persistence of a positive plant diversity–productivity relationship in the absence of legumes. Oikos 118, 101–106 (2009).

    Article 

    Google Scholar
     

  • Wang, G. et al. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecol. Lett. 22, 1221–1232 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • van Ruijven, J., Ampt, E., Francioli, D. & Mommer, L. Do soil-borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. J. Ecol. 108, 1810–1821 (2020).

    Article 

    Google Scholar
     

  • Cong, W.-F. et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163–1170 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Plant species richness negatively affects root decomposition in grasslands. J. Ecol. 105, 209–218 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cá, J., Lustosa Filho, J. F., da Silva, N. R., de Castro, C. R. T. & de Oliveira, T. S. C. N stocks in silvopastoral systems with high and low tree diversity: Evidence from a twenty-two year old field study. Sci. Total Environ. 833, 155298 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Peng, S. et al. Species mixtures enhance fine root biomass but inhibit root decay under throughfall manipulation in young natural boreal forests. Sci. Total Environ. 955, 176952 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, V. C. & Bradford, M. A. Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters?. Oikos 102, 235–242 (2003).

    Article 

    Google Scholar
     

  • Hättenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).

    Article 

    Google Scholar
     

  • Xiong, S. & Nilsson, C. The effects of plant litter on vegetation: a meta-analysis. J. Ecol. 87, 984–994 (1999).

    Article 

    Google Scholar
     

  • Wan, X. et al. Functional identity drives tree species richness-induced increases in litterfall production and forest floor mass in young tree communities. N. Phytol. 240, 1003–1014 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Baldwin-Kordick, R. et al. Comprehensive impacts of diversified cropping on soil health and sustainability. Agroecol. Sustain. Food Syst. 46, 331–363 (2022).

    Article 

    Google Scholar
     

  • Cesarz, S., Fahrenholz, N., Migge-Kleian, S., Platner, C. & Schaefer, M. Earthworm communities in relation to tree diversity in a deciduous forest. Eur. J. Soil Biol. 43, S61-S67 (2007).

  • Spehn, E. M., Joshi, J., Schmid, B., Alphei, J. & Körner, C. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224, 217–230 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Milcu, A., Partsch, S., Scherber, C., Weisser, W. W. & Scheu, S. Earthworms and legumes control litter decomposition in a plant diversity gradient. Ecology 89, 1872–1882 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Xiao, W., Chen, C., Chen, X., Huang, Z. & Chen, H. Y. H. Functional and phylogenetic diversity promote litter decomposition across terrestrial ecosystems. Glob. Ecol. Biogeogr. 29, 2261–2272 (2020).

    Article 

    Google Scholar
     

  • Makkonen, M., Berg, M. P., van Logtestijn, R. S. P., van Hal, J. R. & Aerts, R. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122, 987–997 (2013).

    Article 

    Google Scholar
     

  • Cuchietti, A., Marcotti, E., Gurvich, D. E., Cingolani, A. M. & Pérez Harguindeguy, N. Leaf litter mixtures and neighbour effects: low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours. Appl. Soil Ecol. 82, 44–51 (2014).

    Article 

    Google Scholar
     

  • Berglund, S. L., Ågren, G. I. & Ågren, G. I. When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos 121, 1112–1120 (2012).

    Article 

    Google Scholar
     

  • Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Synergistic effects: a common theme in mixed-species litter decomposition. N. Phytol. 227, 757–765 (2020).

    Article 

    Google Scholar
     

  • Bessler, H. et al. Nitrogen uptake by grassland communities: Contribution of N2 fixation, facilitation, complementarity, and species dominance. Plant Soil 358, 301–322 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. & Chen, H. Y. H. Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nat. Commun. 12, 1–9 (2021).


    Google Scholar
     

  • Porre, R. J., van der Werf, W., De Deyn, G. B., Stomph, T. J. & Hoffland, E. Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biol. Biochem. 145, 107791 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Angst, G. et al. Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biol. Biochem. 159, 108302 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fornara, D. A., Tilman, D. & Hobbie, S. E. Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J. Ecol. 97, 48–56 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Spehn, E. M. et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98, 205–218 (2002).

    Article 

    Google Scholar
     

  • Prescott, C. E. Do rates of litter decomposition tell us anything we really need to know? Ecol. Manag. 220, 66–74 (2005).

    Article 

    Google Scholar
     

  • Prescott, C. E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochemistry 101, 133–149 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mueller, K. E. et al. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 123, 313–327 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Berg, È. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management 133, 13–22 (2000).

  • Berg, B. et al. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100, 57–73 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Whalen, E. D., Grandy, A. S., Geyer, K. M., Morrison, E. W. & Frey, S. D. Microbial trait multifunctionality drives soil organic matter formation potential. Nat. Commun. 15, 10209 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange, M. et al. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS ONE 9, e96182 (2014).

  • Thakur, M. P. et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob. Chang. Biol. 21, 4076–4085 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • McDaniel, M. D., Tiemann, L. K. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedersoo, L. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 10, 346–362 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms?. Ecol. Evol. 6, 7387–7396 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loranger-Merciris, G., Barthes, L., Gastine, A. & Leadley, P. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biol. Biochem. 38, 2336–2343 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Dassen, S. et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol. Ecol. 26, 4085–4098 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenhauer, N., Reich, P. B. & Scheu, S. Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic Appl. Ecol. 13, 571–578 (2012).

    Article 

    Google Scholar
     

  • Duan, P. et al. Tree species diversity increases soil microbial carbon use efficiency in a subtropical forest. Glob. Chang. Biol. 29, 7131–7144 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prommer, J. et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Chang. Biol. 26, 669–681 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 660 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spohn, M. et al. The positive effect of plant diversity on soil carbon depends on climate. Nat. Commun. 14, 6624 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jilling, A. et al. Rapid and distinct responses of particulate and mineral-associated organic nitrogen to conservation tillage and cover crops. Geoderma 359, 114001 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jilling, A. et al. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 139, 103–122 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, A. et al. Root functional traits explain root exudation rate and composition across a range of grassland species. J. Ecol. 110, 21–33 (2022).

    Article 

    Google Scholar
     

  • Smith, D. J. et al. Dissolved organic carbon characteristics are associated with changes in soil microbiome under different plant species. Appl. Soil Ecol. 196, 105313 (2024).

    Article 

    Google Scholar
     

  • Scheibe, A. & Gleixner, G. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest. PLoS ONE 9, 1–21 (2014).

    Article 

    Google Scholar
     

  • Peng, S. & Chen, H. Y. H. Global responses of fine root biomass and traits to plant species mixtures in terrestrial ecosystems. Glob. Ecol. Biogeogr. 30, 289–304 (2021).

    Article 

    Google Scholar
     

  • Lange, M. et al. Plant diversity enhances production and downward transport of biodegradable dissolved organic matter. J. Ecol. 109, 1284–1297 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pérès, G. et al. Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant Soil 373, 285–299 (2013).

    Article 

    Google Scholar
     

  • Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).

    Article 

    Google Scholar
     

  • Liu, C. et al. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 376, 445–459 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, C. et al. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant Soil 397, 1–16 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cotrufo, M. F., Haddix, M. L., Kroeger, M. E. & Stewart, C. E. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biol. Biochem. 168, 108648 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chari, N. R. & Taylor, B. N. Soil organic matter formation and loss are mediated by root exudates in a temperate forest. Nat. Geosci. 15, 1011–1016 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Chang. 5, 588–595 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Don, A. & Kalbitz, K. Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol. Biochem. 37, 2171–2179 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X., Chen, H. Y. H. & Chang, S. X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nat. Ecol. Evol. 6, 1112–1121 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant Soil 464, 257–272 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Spohn, M. et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 97, 168–175 (2016).

  • Renwick, L. L. R. et al. Long-term crop rotation diversification enhances maize drought resistance through soil organic matter. Environ. Res. Lett. 16, 84067 (2021).

    Article 
    CAS 

    Google Scholar
     

  • De Frenne, P. et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Chang. Biol. 27, 2279–2297 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Domeignoz-Horta, L. A. et al. Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils. Nat. Commun. 15, 8065 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haddad, N. M. et al. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Multitrophic arthropod diversity mediates tree diversity effects on primary productivity. Nat. Ecol. Evol. 7, 832–840 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Chang. Biol. 18, 435–447 (2012).

    Article 

    Google Scholar
     

  • Siemann, E. Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79, 2057–2070 (1998).

    Article 

    Google Scholar
     

  • Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chauvat, M., Titsch, D., Zaytsev, A. S. & Wolters, V. Changes in soil faunal assemblages during conversion from pure to mixed forest stands. Ecol. Manag. 262, 317–324 (2011).

    Article 

    Google Scholar
     

  • Ledeganck, P., Nijs, I. & Beyens, L. Plant functional group diversity promotes soil protist diversity. Protist 154, 239–249 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Dietrich, P., Cesarz, S., Liu, T., Roscher, C. & Eisenhauer, N. Effects of plant species diversity on nematode community composition and diversity in a long-term biodiversity experiment. Oecologia 197, 297–311 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortois, R. et al. Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere 8, e01719 (2017).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6, e16055 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mielke, L. et al. Nematode grazing increases the allocation of plant-derived carbon to soil bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere. Pedobiologia 90, 150787 (2022).

    Article 

    Google Scholar
     

  • Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: a review. Soil Biol. Biochem. 94, 94–106 (2016).

    Article 
    CAS 

    Google Scholar
     

  • De Deyn, G. B., Raaijmakers, C. E., Van Ruijven, J., Berendse, F. & Van Der Putten, W. H. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 106, 576–586 (2004).

    Article 

    Google Scholar
     

  • Achury, R. et al. Plant diversity and functional identity alter ant occurrence and activity in experimental grasslands. Ecosphere 13, e4252 (2022).

    Article 

    Google Scholar
     

  • Gastine, A., Scherer-Lorenzen, M. & Leadley, P. W. No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl. Soil Ecol. 24, 101–111 (2003).

    Article 

    Google Scholar
     

  • Hasegawa, M. et al. The effects of mixed broad-leaved trees on the collembolan community in larch plantations of central Japan. Appl. Soil Ecol. 83, 125–132 (2014).

    Article 

    Google Scholar
     

  • Salamon, J.-A., Schaefer, M., Alphei, J., Schmid, B. & Scheu, S. Effects of plant diversity on Collembola in an experimental grassland ecosystem. Oikos 106, 51–60 (2004).

    Article 

    Google Scholar
     

  • Cesarz, S. et al. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biol. Biochem. 62, 36–45 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Viketoft, M. et al. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90, 90–99 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Perner, J. et al. Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslands. Ecography 28, 429–442 (2005).

    Article 

    Google Scholar
     

  • Laossi, K.-R. et al. Effects of plant diversity on plant biomass production and soil macrofauna in Amazonian pastures. Pedobiologia 51, 397–407 (2008).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol. Biochem. 41, 2430–2443 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Schwarz, B. et al. Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. Eur. J. Soil Biol. 67, 17–26 (2015).

    Article 

    Google Scholar
     

  • Milcu, A., Partsch, S., Langel, R. & Scheu, S. The response of decomposers (earthworms, springtails and microorganisms) to variations in species and functional group diversity of plants. Oikos 112, 513–524 (2006).

    Article 

    Google Scholar
     

  • Dümig, A., Smittenberg, R. & Kögel-Knabner, I. Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland. Geoderma 163, 83–94 (2011).

    Article 

    Google Scholar
     

  • Georgiou, K. et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 13, 3797 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • West, T. O. & Six, J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim. Change 80, 25–41 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Frouz, J. Effects of soil development time and litter quality on soil carbon sequestration: assessing soil carbon saturation with a field transplant experiment along a post-mining chronosequence. L. Degrad. Dev. 672, 664–672 (2017).

    Article 

    Google Scholar
     

  • Qu, Q. et al. Belowground C sequestrations response to grazing exclusion in global grasslands: Dynamics and mechanisms. Agric. Ecosyst. Environ. 360, 108771 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, K., Scatena, F. N. & Pan, Y. Short- and long-term responses of total soil organic carbon to harvesting in a northern hardwood forest. Ecol. Manag. 259, 1262–1267 (2010).

    Article 

    Google Scholar
     

  • Poeplau, C., Dechow, R., Begill, N. & Don, A. Towards an ecosystem capacity to stabilise organic carbon in soils. Glob. Chang. Biol. 30, e17453 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Begill, N., Don, A. & Poeplau, C. No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils. Glob. Chang. Biol. 29, 4662–4669 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cotrufo, M. F., Lavallee, J. M., Six, J. & Lugato, E. The robust concept of mineral-associated organic matter saturation: A letter to Begill et al., 2023. Glob. Chang. Biol. 29, 5986–5987 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breure, T. S. et al. Revisiting the soil carbon saturation concept to inform a risk index in European agricultural soils. Nat. Commun. 16, 2538 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, P. M. et al. Distinct, direct and climate-mediated environmental controls on global particulate and mineral-associated organic carbon storage. Glob. Chang. Biol. 30, e17080 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P. & Francesca Cotrufo, M. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Prater, I. et al. From fibrous plant residues to mineral-associated organic carbon–the fate of organic matter in Arctic permafrost soils. Biogeosciences 17, 3367–3383 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mueller, C. W. et al. Large amounts of labile organic carbon in permafrost soils of northern Alaska. Glob. Chang. Biol. 21, 2804–2817 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sayer, E. J. et al. Altered litter inputs modify carbon and nitrogen storage in soil organic matter in a lowland tropical forest. Biogeochemistry 156, 115–130 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Man, M. et al. Twenty years of litter manipulation reveals that above-ground litter quantity and quality controls soil organic matter molecular composition. Biogeochemistry 159, 393–411 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pierson, D. et al. Mineral stabilization of soil carbon is suppressed by live roots, outweighing influences from litter quality or quantity. Biogeochemistry 154, 433–449 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Haddix, M. L., Paul, E. A. & Cotrufo, M. F. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter. Glob. Chang. Biol. 22, 2301–2312 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, R. et al. A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition. N. Phytol. 230, 857–866 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Domeignoz-Horta, L. A. et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 11, 3684 (2020).

  • Eisenhauer, N. et al. Ecosystem consequences of invertebrate decline. Curr. Biol. 33, 4538–4547.e5 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy, J. et al. Ecotrons: powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. Glob. Chang. Biol. 27, 1387–1407 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schädler, M. et al. Investigating the consequences of climate change under different land-use regimes: a novel experimental infrastructure. Ecosphere 10, e02635 (2019).

  • Just, C. et al. A simple approach to isolate slow and fast cycling organic carbon fractions in Central European soils—importance of dispersion method. Front. Soil Sci. 1, e02635 (2021).

  • White, R. A. et al. The state of rhizospheric science in the era of multi-omics: A practical guide to omics technologies. Rhizosphere 3, 212–221 (2017).

    Article 

    Google Scholar
     

  • Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).

    Article 

    Google Scholar
     

  • Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    More From Forest Beat

    (Bee) Sex in the city: a new study shows how urban...

    Bees are among the most important pollinators in the natural world, quietly sustaining ecosystems and food production. While honeybees often steal the spotlight,...
    Biodiversity
    3
    minutes

    Forecasting impacts of climate change on barking deer distribution in Pakistan

    Garcia-ulloa, J., Verones, F., Huijbregts, M. A. J. & Schipper, A. M. Article habitat fragmentation amplifies threats from habitat loss to mammal diversity...
    Biodiversity
    8
    minutes

    Mining must overcome challenges to contribute towards a nature-positive future

    The mining industry has decades of experience in restoration, biodiversity management and conservation, often beyond the mine fence. Emma Gagen, Director of Data and...
    Biodiversity
    0
    minutes

    The draft genome sequences of the cosmopolitan centric diatom, the genus...

    Round, F.E., Crawford, R.M. & Mann, D.G. The diatoms. Biology and morphology of the genera. Cambridge: Cambridge University Press. p. 747 (1990).Gordon, R....
    Biodiversity
    6
    minutes
    spot_imgspot_img