Davis, C. C. The herbarium of the future. Trends Ecol. Evol. 38, 412–423 (2023).
Mandrioli, M. From dormant collections to repositories for the study of habitat changes: the importance of herbaria in modern life sciences. Life 13, 2310 (2023).
Thiers, B. M. Strengthening partnerships to safeguard the future of herbaria. Diversity 16, 36 (2024).
Heberling, J. M., Prather, L. A. & Tonsor, S. J. The changing uses of herbarium data in an era of global change: an overview using automated content analysis. BioScience 69, 812–822 (2019).
Çelekli, A. & Zariç, Ö. E. Utilization of herbaria in ecological studies: biodiversity and landscape monitoring. Herbarium Turcicum https://doi.org/10.26650/HT.2023.1345916 (2023).
Davis, C. C. Collections are truly priceless. Science 383, 1035 (2024).
Willis, C. G. et al. Old plants, new tricks: phenological research using herbarium specimens. Trends Ecol. Evol. 32, 531–546 (2017).
Loiselle, B. A. et al. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J. Biogeogr. 35, 105–116 (2008).
Beaulieu, C., Lavoie, C. & Proulx, R. Bookkeeping of insect herbivory trends in herbarium specimens of purple loosestrife (Lythrum salicaria). Philos. Trans. R. Soc. B 374, 20170398 (2018).
Meineke, E. K., Classen, A. T., Sanders, N. J. & Davies, T. J. Herbarium specimens reveal increasing herbivory over the past century. J. Ecol. 107, 105–117 (2019).
Lorieul, T. et al. Toward a large-scale and deep phenological stage annotation of herbarium specimens: case studies from temperate, tropical, and equatorial floras. Appl. Plant Sci. 7, e1233 (2019).
Pauw, A. & Hawkins, J. A. Reconstruction of historical pollination rates reveals linked declines of pollinators and plants. Oikos 120, 344–349 (2011).
Ristaino, J. B., Groves, C. T. & Parra, G. R. PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411, 695–697 (2001).
Bianciotto, V., Selosse, M. A., Martos, F. & Marmeisse, R. Herbaria preserve plant microbiota responses to environmental changes. Trends Plant Sci. 27, 120–123 (2022).
Fatima, T. et al. Microbial endophytes: a hidden plant resident, application and their role in abiotic stress management in plants. J. Ecophysiol. Occup. Health 22, 127–140 (2022).
Edwards-Calma, K. et al. Conservation applications of niche modeling: native and naturalized ferns may compete for limited Hawaiian dryland habitat. Appl. Plant Sci. 2, e11598 (2014).
Miller, T. K., Heberling, J. M., Kuebbing, S. E. & Primack, R. B. Warmer temperatures are linked to widespread phenological mismatch among native and non-native forest plants. J. Ecol. 111, 356–371 (2023).
Park, I. W. et al. Herbarium data accurately predict the timing and duration of population-level flowering displays. Ecography 47, e06961 (2024).
Van Dam, N. M. How plants cope with biotic interactions. Plant Biol. 11, 1–5 (2009).
Garrett, K. A. et al. in Climate Change (eds Nita, M. et al.) 499–513 (Elsevier, 2021).
Labandeira, C. The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci. 14, 259–275 (2007).
Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. Herbivory increases diversification across insect clades. Nat. Commun. 6, 8370 (2015).
Segar, J. et al. Divergent roles of herbivory in eutrophying forests. Nat. Commun. 13, 7837 (2022).
Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
Castro, C. C. et al. Trophic interactions between plants, pollinators, florivores, and predators: a global systematic review. Biol. J. Linn. Soc. 141, 214–233 (2024).
Bengtsson, J., Fagerström, T. & Rydin, H. Competition and coexistence in plant communities. Trends Ecol. Evol. 9, 246–250 (1994).
Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).
Johnson, C. A., Dutt, P. & Levine, J. M. Competition for pollinators destabilizes plant coexistence. Nature 607, 721–725 (2022).
Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
Ke, P. J., Miki, T. & Ding, T. S. The soil microbial community predicts the importance of plant traits in plant–soil feedback. N. Phytol. 206, 329–341 (2015).
Yan, X., Levine, J. M. & Kandlikar, G. S. A quantitative synthesis of soil microbial effects on plant species coexistence. Proc. Natl Acad. Sci. USA 119, e2122088119 (2022).
Michaud, T. J., Cline, L. C., Hobbie, E. A., Gutknecht, J. L. & Kennedy, P. G. Herbarium specimens reveal that mycorrhizal type does not mediate declining temperate tree nitrogen status over a century of environmental change. N. Phytol. 242, 1717–1724 (2024).
Eves-van den Akker, S. Plant–nematode interactions. Curr. Opin. Plant Biol. 62, 102035 (2021).
HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).
Sultana, F., Motaher Hossain, M., Kubota, M. & Hyakumach, M. Induction of systemic resistance in Arabidopsis thaliana in response to culture filtrates from a plant growth-promoting fungus, Phoma sp. GS8-3. Plant Biol. 11, 97–104 (2008).
Jones, M. D. & Smith, S. E. Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can. J. Bot. 82, 1089–1109 (2004).
Fontúrbel, F. F., Nespolo, R. F., Amico, G. C. & Watson, D. M. Climate change can disrupt ecological interactions in mysterious ways: using ecological generalists to forecast community-wide effects. Clim. Change Ecol. 2, 100044 (2021).
Currano, E. D., Azevedo-Schmidt, L. E., Maccracken, S. A. & Swain, A. Scars on fossil leaves: an exploration of ecological patterns in plant–insect herbivore associations during the age of angiosperms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 582, 110636 (2021).
Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).
Rull, V. Contributions of paleoecology to Easter Island’s prehistory: a thorough review. Quat. Sci. Rev. 252, 106751 (2021).
Ward, N. & Dirzo, R. The potential of herbarium specimens in capturing historical herbivory: a test of the consequences of global insect decline. Stanford Digital Repository https://purl.stanford.edu/bs716vt4856 (2024).
Daru, B. H., Bowman, E. A., Pfister, D. H. & Arnold, A. E. A novel proof-of-concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos. Trans. R. Soc. B 374, 20170395 (2018).
Heberling, J. M. & Burke, D. J. Utilizing herbarium specimens to quantify historical mycorrhizal communities. Appl. Plant Sci. 7, e1223 (2019).
Bieker, V. C. et al. Metagenomic analysis of historical herbarium specimens reveals a postmortem microbial community. Mol. Ecol. Resour. 20, 1206–1219 (2020).
Bieker, V. C. et al. Uncovering the genomic basis of an extraordinary plant invasion. Sci. Adv. 8, eabo5115 (2022).
Park, D. S., Huynh, K. M. & Feng, X. Phenological similarity and distinctiveness facilitate plant invasions. Glob. Ecol. Biogeogr. 33, e13839 (2024).
Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).
Bartlett, K. B., Austin, M. W., Beck, J. B., Zanne, A. E. & Smith, A. B. Beyond the usual climate? Factors determining flowering and fruiting phenology across a genus over 117 years. Am. J. Bot. 110, e16188 (2023).
Funk, V. A. 100 uses for an herbarium: well at least 72. Am. Soc. Plant Taxon. Newslett. 17, 17–19 (2003).
Beauvais, M. P., Pellerin, S., Dubé, J. & Lavoie, C. Herbarium specimens as tools to assess the impact of large herbivores on plant species. Botany 95, 153–162 (2017).
Johnson, A. L., Rebolleda-Gómez, M. & Ashman, T. L. Pollen on stigmas of herbarium specimens: a window into the impacts of a century of environmental disturbance on pollen transfer. Am. Nat. 194, 405–413 (2019).
Petipas, R. H., Antoch, A. A., Eaker, A. A., Kehlet-Delgado, H. & Friesen, M. L. Back to the future: using herbarium specimens to isolate nodule-associated bacteria. Ecol. Evol. 14, e11719 (2024).
Bowman, W. D., Hacker, S. D. & Cain, M. L. Ecology 4th edn (Sinauer Associates, 2017).
Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).
Kozlov, M. V. & Zvereva, E. L. in Progress in Botany Vol. 79 (eds Cánovas, F., Lüttge, U. & Matyssek, R.) https://doi.org/10.1007/124_2017_4 (Springer, 2017).
Johnson, W. T. & Lyon, H. H. Insects that Feed on Trees and Shrubs 2nd edn, 560 (Cornell Univ. Press, 1991).
Labandeira, C. C. & Currano, E. D. The fossil record of plant–insect dynamics. Annu. Rev. Earth Planet. Sci. 41, 287–311 (2013).
Labandeira, C. C., Wilf, P., Johnson, K. R. & Marsh, F. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils. Version 3.0, 25 (Smithsonian Institution, 2007).
Jenny, L. A. et al. Herbarium specimens reveal herbivory patterns across the genus Cucurbita. Am. J. Bot. 110, e16126 (2023).
Kozlov, M. V. et al. Biases in estimation of insect herbivory from herbarium specimens. Sci. Rep. 10, 12298 (2020).
Lees, D. C. et al. Tracking origins of invasive herbivores through herbaria and archival DNA: the case of the horse-chestnut leaf miner. Front. Ecol. Environ. 9, 322–328 (2011).
Pellmyr, O., Labandeira, C. C. & Herrera, C. M. (eds) Plant–Animal Interactions: An Evolutionary Approach (Blackwell Science, 2002).
Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).
Johnson, M. T. J. Evolutionary ecology of plant defences against herbivores. Funct. Ecol. 25, 305–311 (2011).
Myers, J. H. & Bazely, D. in Phytochemical Induction by Herbivores (eds Tallamy, D. W. & Raupp, M. J.) 325–344 (Wiley, 1991).
Kohl, K. D., Miller, A. W. & Dearing, M. D. Evolutionary irony: evidence that ‘defensive’ plant spines act as a proximate cue to attract a mammalian herbivore. Oikos 124, 835–841 (2015).
Heberling, J. M. Herbaria as big data sources of plant traits. Int. J. Plant Sci. 183, 87–118 (2022).
Václavík, T., Beckmann, M., Cord, A. F. & Bindewald, A. M. Effects of UV-B radiation on leaf hair traits of invasive plants — combining historical herbarium records with novel remote sensing data. PLoS ONE 12, e0175671 (2017).
Mithen, R., Bennett, R. & Marquez, J. Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71, 2074–2086 (2010).
Colegate, S. M., Welsh, S. L., Gardner, D. R., Betz, J. M. & Panter, K. E. Profiling of dehydropyrrolizidine alkaloids and their N-oxides in herbarium-preserved specimens of Amsinckia species using HPLC-esi(+)MS. J. Agric. Food Chem. 62, 7382–7392 (2014).
Tasca, J. A. et al. HPLC–MS detection of pyrrolizidine alkaloids and their N-oxides in herbarium specimens dating back to the 1850s. Appl. Plant Sci. 6, e1143 (2018).
Meineke, E. K. & Davies, T. J. Museum specimens provide novel insights into changing plant–herbivore interactions. Philos. Trans. R. Soc. B 374, 20170393 (2019).
Youngsteadt, E., Dale, A. G., Terando, A. J., Dunn, R. R. & Frank, S. D. Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob. Change Biol. 21, 97–105 (2015).
Stothut, M. et al. Recovering plant-associated arthropod communities by eDNA metabarcoding historical herbarium specimens. Curr. Biol. 34, 4318–4324 (2024).
McDonnell, A. J. et al. Exploring Angiosperms353: developing and applying a universal toolkit for flowering plant phylogenomics. Appl. Plant Sci. 9, e11443 (2021).
Gutaker, R. M. & Burbano, H. A. Reinforcing plant evolutionary genomics using ancient DNA. Curr. Opin. Plant Biol. 36, 38–45 (2017).
McLay, T. G. B. et al. New targets acquired: improving locus recovery from the Angiosperms353 probe set. Appl. Plant Sci. 9, e11420 (2021).
Slimp, M., Williams, L. D., Hale, H. & Johnson, M. G. On the potential of Angiosperms353 for population genomic studies. Appl. Plant Sci. 9, e11419 (2021).
Levesque-Beaudin, V. et al. A workflow for expanding DNA barcode reference libraries through ‘museum harvesting’ of natural history collections. Biodivers. Data J. 11, e100677 (2023).
Piñol, J., Mir, G., Gomez-Polo, P. & Agustí, N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 15, 819–830 (2015).
Meineke, E. K., Tomasi, C., Yuan, S. & Pryer, K. M. Applying machine learning to investigate long-term insect–plant interactions preserved on digitized herbarium specimens. Appl. Plant Sci. 8, e11369 (2020).
Ćalić, D., Milojević, J., Belić, M., Miletić, R. & Zdravković-Korać, S. Impact of storage temperature on pollen viability and germinability of four Serbian autochthon apple cultivars. Front. Plant Sci. 12, 709231 (2021).
Robbirt, K. M., Roberts, D. L., Hutchings, M. J. & Davy, A. J. Potential disruption of pollination in a sexually deceptive orchid by climatic change. Curr. Biol. 24, 2845–2849 (2014).
Bell, K. L. et al. Applying pollen DNA metabarcoding to the study of plant–pollinator interactions. Appl. Plant Sci. 5, 6 (2017).
Lowe, A., Harrison, N. & Ashton, P. Using DNA metabarcoding to identify floral visitation by pollinators. Diversity 14, 236 (2022).
Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).
Pornon, A. et al. DNA metabarcoding data unveils invisible pollination networks. Sci. Rep. 7, 16828 (2017).
Park, I. W. & Schwartz, M. D. Long-term herbarium records reveal temperature-dependent changes in flowering phenology in the southeastern USA. Int. J. Biometeorol. 59, 347–355 (2015).
Witt, T., Jürgens, A. & Gottsberger, G. Nectar sugar composition of European Caryophylloideae (Caryophyllaceae) in relation to flower length, pollination biology and phylogeny. J. Evol. Biol. 26, 2244–2259 (2013).
Baker, H. G., Baker, I. & Hodges, S. A. Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30, 559–586 (1998).
Tucker, A. O. & Calabrese, L. The Use and Methods of Making a Herbarium/Plant Specimens: an Herb Society of America Guide (The Herb Society of America, 2005).
Cascales, E. V. et al. Fructooligosaccharides stability during the processing and the shelf life of an aseptically packed commercial pineapple nectar. J. Food Nutr. Res. 9, 193–198 (2021).
Łuczak, P., Klewicki, R. & Klewicka, E. Stability of fructooligosaccharides in convectively dried fruits after initial osmoconcentration. Food Bioprocess. Technol. 16, 2511–2520 (2023).
Davis, C. C., Willis, C. G., Connolly, B., Kelly, C. & Ellison, A. M. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. Am. J. Bot. 102, 1599–1609 (2015).
Jones, C. A. & Daehler, C. C. Herbarium specimens can reveal impacts of climate change on plant phenology: a review of methods and applications. PeerJ 6, e4576 (2018).
Ahlstrand, N. I., Elvery, H. M. & Primack, R. B. Grass flowering times determined using herbarium specimens for modeling grass pollen under a warming climate. Sci. Total Environ. 885, 163824 (2023).
Williams, T. M., Schlichting, C. D. & Holsinger, K. E. Herbarium records demonstrate changes in flowering phenology associated with climate change over the past century within the Cape Floristic Region, South Africa. Clim. Change Ecol. 1, 100006 (2021).
Kudo, G. & Cooper, E. J. When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction. Proc. R. Soc. B 286, 20190573 (2019).
Freimuth, J., Bossdorf, O., Scheepens, J. F. & Willems, F. M. Climate warming changes synchrony of plants and pollinators. Proc. R. Soc. B 289, 20212142 (2022).
Biederman, L. et al. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the US Central Plains. PLoS ONE 12, e0178440 (2017).
Forsman, A. M., Savage, A. E., Hoenig, B. D. & Gaither, M. R. DNA metabarcoding across disciplines: sequencing our way to greater understanding across scales of biological organization. Integr. Comp. Biol. 62, 191–198 (2022).
Bell, K. et al. Pollen DNA metabarcoding and related methods in global change ecology: prospects, challenges, and progress. Authorea https://doi.org/10.22541/au.164346764.44098850/v1 (2022).
Bell, K. L. et al. Plants, pollinators and their interactions under global ecological change: the role of pollen DNA metabarcoding. Mol. Ecol. 32, 6345–6362 (2023).
Balmaki, B. et al. Modern approaches for leveraging biodiversity collections to understand change in plant–insect interactions. Front. Ecol. Evol. 10, 924941 (2022).
Rakosy, D., Ashman, T. L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Funct. Ecol. 37, 218–233 (2023).
Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).
Harrison, J. G. & Griffin, E. A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ. Microbiol. 22, 2107–2123 (2020).
Trivellone, V., Wei, W., Filippin, L. & Dietrich, C. H. Screening potential insect vectors in a museum biorepository reveals undiscovered diversity of plant pathogens in natural areas. Ecol. Evol. 11, 6493–6503 (2021).
Yoshida, K. et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2, e00731 (2013).
Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. 10, e1004028 (2014).
Martin, M. D., Ho, S. Y., Wales, N., Ristaino, J. B. & Gilbert, M. T. P. Persistence of the mitochondrial lineage responsible for the Irish potato famine in extant new world Phytophthora infestans. Mol. Biol. Evol. 31, 1414–1420 (2014).
Martin, M. D. et al. Genomic characterization of a South American phytophthora hybrid mandates reassessment of the geographic origins of Phytophthora infestans. Mol. Biol. Evol. 33, 478–491 (2016).
Campos, P. E. et al. First historical genome of a crop bacterial pathogen from herbarium specimen: insights into citrus canker emergence. PLoS Pathog. 17, e1009714 (2021).
Campos, P. E. et al. Herbarium specimen sequencing allows precise dating of Xanthomonas citri pv. citri diversification history. Nat. Commun. 14, 4306 (2023).
Ristaino, J. B., Hu, C. H. & Fitt, B. D. Evidence for presence of the founder Ia mtDNA haplotype of Phytophthora infestans in 19th century potato tubers from the Rothamsted archives. Plant Pathol. 62, 492–500 (2013).
May, K. J. & Ristaino, J. B. Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish potato famine. Mycol. Res. 108, 471–479 (2004).
Agan, A., Tedersoo, L., Hanso, M. & Drenkhan, R. Traces of Hymenoscyphus fraxineus in Northeastern Europe extend further back in history than expected. Plant Dis. 107, 344–349 (2023).
Gross, A. et al. Hidden invasion and niche contraction revealed by herbaria specimens in the fungal complex causing oak powdery mildew in Europe. Biol. Invasions 23, 885–901 (2021).
Hubbes, M. The American elm and Dutch elm disease. For. Chron. 75, 265–273 (1999).
Stone, A. Organic management of late blight of potato and tomato (Phytophthora infestans). extension.org http://www.extension.org/article/18361 (accessed 10 July 2012).
Shweta, S. et al. Herbaria: a valuable resource of the time treasured historic plant specimens with boundless research potential for environmental sustainability. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05301-1 (2024).
Miller, S., Masuya, H., Zhang, J., Walsh, E. & Zhang, N. Real-time PCR detection of dogwood anthracnose fungus in historical herbarium specimens from Asia. PLoS ONE 11, e0154030 (2016).
Pastirčáková, K. et al. Global distribution of Erysiphe platani: new records, teleomorph formation and re-examination of herbarium collections. Cryptogam. Mycol. 35, 163–176 (2014).
Dvořák, P., Hašler, P. & Poulíčková, A. New insights into the genomic evolution of cyanobacteria using herbarium exsiccatae. Eur. J. Phycol. 55, 30–38 (2020).
Sundelin, T. et al. A revision of the history of the Colletotrichum acutatum species complex in the Nordic countries based on herbarium specimens. FEMS Microbiol. Lett. 362, fnv130 (2015).
Hobbie, E. A., Chen, J. & Hasselquist, N. J. Fertilization alters nitrogen isotopes and concentrations in ectomycorrhizal fungi and soil in pine forests. Fungal Ecol. 39, 267–275 (2019).
Kranabetter, J. M., Harman-Denhoed, R. & Hawkins, B. J. Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C: N: P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. N. Phytol. 221, 482–492 (2019).
Rudgers, J. A. et al. Climate disruption of plant–microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).
Singh, A. & Shourie, A. in Climate Change and the Microbiome, Soil Biology Vol. 63 (eds Choudhary, D. K., Mishra, A. & Varma, A.) 155–186 (Springer, 2021).
Shree, B., Jayakrishnan, U. & Bhushan, S. Impact of key parameters involved with plant–microbe interaction in context to global climate change. Front. Microbiol. 13, 1008451 (2022).
Van Nuland, M. E., Qin, C., Pellitier, P. T., Zhu, K. & Peay, K. G. Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range shifts. Proc. Natl Acad. Sci. USA 121, e2308811121 (2024).
Gurevitch, J., Scheiner, S. M. & Fox, G. A. The Ecology of Plants 3rd edn (Oxford Univ. Press, 2020).
Smith, H. in Photomorphogenesis in Plants (eds Kendrick, R. E. & Kronenberg, G. H. M.) https://doi.org/10.1007/978-94-011-1884-2_15 (Springer, 1994).
Mitchell, R. J., Flanagan, R. J., Brown, B. J., Waser, N. M. & Karron, J. D. New frontiers in competition for pollination. Ann. Bot. 103, 1403–1413 (2009).
Schnell, D. E. Carnivorous Plants of the United States and Canada 2nd edn (Timber Press, 2002).
Janzen, D. H. How to be a fig. Annu. Rev. Ecol. Syst. 10, 13–51 (1979).
Aschehoug, E. T. et al. The mechanisms and consequences of interspecific competition among plants. Annu. Rev. Ecol. Evol. Syst. 47, 263–281 (2016).
Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).
Daru, B. H. et al. Widespread sampling biases in herbaria revealed from large-scale digitization. N. Phytol. 217, 939–955 (2018).
Greve, M. et al. Realising the potential of herbarium records for conservation biology. S. Afr. J. Bot. 105, 317–323 (2016).
Park, D. S. et al. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philos. Trans. R. Soc. B 374, 20170394 (2018).
Délye, C., Deulvot, C. & Chauvel, B. DNA analysis of herbarium specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides. PLoS ONE 8, e75117 (2013).
Kreiner, J. M. et al. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. Science 378, 1079–1085 (2022).
Kühn, P., Umazekabiri, R., Römermann, C., Bruelheide, H. & Wesche, K. Nitrogen content of herbarium specimens from arable fields and mesic meadows reflect the intensifying agricultural management during the 20th century. J. Ecol. 113, 555–569 (2025).
Büttner, M., Weibel, U., Jutzi, M., Bergamini, A. & Holderegger, R. A 150-year-old herbarium and floristic data testify regional species decline. Biol. Conserv. 272, 109609 (2022).
Brewer, J. S. & Schlauer, J. in Carnivorous Plants: Physiology, Ecology, and Evolution (eds Ellison, A. M. & Adamec, L.) 7–21 (Oxford Univ. Press, 2018).
Skates, L. M. et al. An ecological perspective on ‘plant carnivory beyond bogs’: nutritional benefits of prey capture for the Mediterranean carnivorous plant Drosophyllum lusitanicum. Ann. Bot. 124, 65–76 (2019).
Fleischmann, A. & Heubl, G. Overcoming DNA extraction problems from carnivorous plants. An. del Jardín Botánico de Madr. 66, 209–215 (2009).
Neyland, R., Bushnell, J. & Tangkham, W. An updated taxonomic treatment of the natural hybrids of Sarracenia L. (Sarraceniaceae). Carnivorous Plant. Newsl. 44, 1 (2015).
Robbirt, K. M., Davy, A. J., Hutchings, M. J. & Roberts, D. L. Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J. Ecol. 99, 235–241 (2011).
Everingham, S. E., Blick, R. A. J., Sabot, M. E. B., Slavich, E. & Moles, A. T. Southern hemisphere plants show more delays than advances in flowering phenology. J. Ecol. 111, 380–390 (2023).
Ghazoul, J. Buzziness as usual? Questioning the global pollination crisis. Trends Ecol. Evol. 20, 367–373 (2005).
Hailay Gebremariam, G. A systematic review of insect decline and discovery: trends, drivers, and conservation strategies over the past two decades. Psyche J. Entomol. 2024, 5998962 (2024).
CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl Acad. Sci. USA 111, 4916–4921 (2014).
Tylianakis, J. M. The global plight of pollinators. Science 339, 1532–1533 (2013).
Hayat, K. et al. in New Frontiers in Plant–Environment Interactions: Innovative Technologies and Developments (ed. Aftab, T.) 535–550 (Springer Nature, 2023).
Groner, M. L. et al. Warming sea surface temperatures fuel summer epidemics of eelgrass wasting disease. Mar. Ecol. Prog. Ser. 679, 47–58 (2021).
Mutz, J., Heiling, J. M. & Underwood, N. Some neighbours are better than others: variation in associational effects among plants in an old field community. J. Ecol. 10, 2118–2131 (2022).
Wise, M. J. & Mudrak, E. L. Nutrient stress can have opposite effects on the ability of plants to tolerate foliar herbivory and floral herbivory. Oecologia 202, 783–794 (2023).
Blumenthal, D. M. & Kray, J. A. in Invasive Species and Global Climate Change (eds Ziska, L. H. & Dukes, J. S.) 62–78 (CAB International, 2014).
Finch, D. M. et al. in Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector (eds Poland, T. M. et al.) 57–84 (Springer International Publishing, 2021).
Barrett, C. F. et al. Digitized collections elucidate invasion history and patterns of awn polymorphism in Microstegium vimineum. Am. J. Bot. 109, 689–705 (2022).
Tsai, H. et al. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife 9, e57022 (2020).
Mattila, A. L. K. et al. The potential for evolutionary rescue in an Arctic seashore plant threatened by climate change. Proc. R. Soc. B 291, 2032 (2024).
Geml, J. et al. Long-term warming alters richness and composition of taxonomic and functional groups of fungi. FEMS Microbiol. Ecol. 91, fiv095 (2015).
Geml, J., Semenova, T. A., Morgado, L. N. & Welker, J. M. Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming. Biol. Lett. 12, 20160503 (2016).
Hall, A. V. Pest control in herbaria. Taxon 37, 885–907 (1988).
Azevedo-Schmidt, L., Meineke, E. K. & Currano, E. D. Insect herbivory within modern forests is greater than fossil localities. Proc. Natl Acad. Sci. USA 119, e2202852119 (2022).
Donovan, M. P., Wilf, P., Iglesias, A., Cúneo, N. R. & Labandeira, C. C. Insect herbivore and fungal communities on Agathis (Araucariaceae) from the latest cretaceous to recent. PhytoKeys 226, 109 (2023).
Giraldo, L. A., Wilf, P., Donovan, M. P., Kooyman, R. M. & Gandolfo, M. A. Fossil insect-feeding traces indicate unrecognized evolutionary history and biodiversity on Australia’s iconic Eucalyptus. N. Phytol. 245, 1762–1773 (2025).
Arens, N. C. & Traverse, A. The effect of microwave oven‐drying on the integrity of spore and pollen exines in herbarium specimens. Taxon 38, 394–403 (1989).
Zhigila, D. A., Sawa, F. B. J., Abdul, S. D. & Danailu, G. Diversity of pollen morphology in accessions of Sesamum indicum L. Int. J. Mod. Bot. 4, 22–28 (2014).
Shepherd, L. D. A non-destructive DNA sampling technique for herbarium specimens. PLoS ONE 12, e0183555 (2017).
Davis, C. C., Sessa, E., Paton, A., Antonelli, A. & Teisher, J. K. Guidelines for the effective and ethical sampling of herbaria. Nat. Ecol. Evol. 9, 196–203 (2024).
Kasban, H., El-Bendary, M. A. M. & Salama, D. H. A comparative study of medical imaging techniques. Int. J. Inf. Sci. Intell. Syst. 4, 37–58 (2015).
Morrant, D. S., Schumann, R. & Petit, S. Field methods for sampling and storing nectar from flowers with low nectar volumes. Ann. Bot. 103, 533–542 (2009).
Martin, R. et al. Optimising recovery of DNA from minimally invasive sampling methods: efficacy of buccal swabs, preservation strategy and DNA extraction approaches for amphibian studies. Ecol. Evol. 14, e70294 (2024).
Burgdorf, R. J., Laing, M. D., Morris, C. D. & Jamal-Ally, S. F. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies. Braz. J. Microbiol. 45, 977–983 (2014).
Schmidt-Lebuhn, A. N., Knerr, N. J. & Kessler, M. Non-geographic collecting biases in herbarium specimens of Australian daisies (Asteraceae). Biodivers. Conserv. 22, 905–919 (2013).
Li, Z.-H., Wang, Q., Ruan, X., Pan, C.-D. & Jiang, D.-A. Phenolics and plant allelopathy. Molecules 15, 8933–8952 (2010).
Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).
Drábková, L. Z. DNA extraction from herbarium specimens. Methods Mol. Biol. 1115, 69–84 (2014).
Byers, D. L. Studying plant–pollinator interactions in a changing climate: a review of approaches. Appl. Plant Sci. 5, 1700012 (2017).
Gouker, F. E., Guo, Y., Svoboda, H. T. & Pooler, M. R. Optimizing efficient PCR-amplifiable DNA extraction from herbarium specimens. Appl. Plant Sci. 11, e11521 (2023).
Burbano, H. A. & Gutaker, R. M. Ancient DNA genomics and the renaissance of herbaria. Science 382, 59–63 (2023).
Rabeler, R. K. et al. Herbarium practices and ethics, III. Syst. Bot. 44, 7–13 (2019).
Papalini, S. et al. Challenges and opportunities behind the use of herbaria in paleogenomics studies. Plants 12, 3452 (2023).
Keddy, P. A. Competition (Kluwer Academic, 2001).
Lemoine, N. P., Burkepile, D. E. & Parker, J. D. Variable effects of temperature on insect herbivory. PeerJ 2, e376 (2014).
Triki, A., Bouaziz, B., Gaikwad, J. & Mahdi, W. Deep leaf: mask R-CNN based leaf detection and segmentation from digitized herbarium specimen images. Pattern Recognit. Lett. 150, 76–83 (2021).
Gautam, A. K. & Avasthi, S. in Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology (eds Kumar, A. et al.) 241–283 (Elsevier, 2019).