Unlocking historical plant interactions in herbarium collections


  • Davis, C. C. The herbarium of the future. Trends Ecol. Evol. 38, 412–423 (2023).


    Google Scholar
     

  • Mandrioli, M. From dormant collections to repositories for the study of habitat changes: the importance of herbaria in modern life sciences. Life 13, 2310 (2023).

    CAS 

    Google Scholar
     

  • Thiers, B. M. Strengthening partnerships to safeguard the future of herbaria. Diversity 16, 36 (2024).


    Google Scholar
     

  • Heberling, J. M., Prather, L. A. & Tonsor, S. J. The changing uses of herbarium data in an era of global change: an overview using automated content analysis. BioScience 69, 812–822 (2019).


    Google Scholar
     

  • Çelekli, A. & Zariç, Ö. E. Utilization of herbaria in ecological studies: biodiversity and landscape monitoring. Herbarium Turcicum https://doi.org/10.26650/HT.2023.1345916 (2023).

  • Davis, C. C. Collections are truly priceless. Science 383, 1035 (2024).


    Google Scholar
     

  • Willis, C. G. et al. Old plants, new tricks: phenological research using herbarium specimens. Trends Ecol. Evol. 32, 531–546 (2017).


    Google Scholar
     

  • Loiselle, B. A. et al. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J. Biogeogr. 35, 105–116 (2008).


    Google Scholar
     

  • Beaulieu, C., Lavoie, C. & Proulx, R. Bookkeeping of insect herbivory trends in herbarium specimens of purple loosestrife (Lythrum salicaria). Philos. Trans. R. Soc. B 374, 20170398 (2018).


    Google Scholar
     

  • Meineke, E. K., Classen, A. T., Sanders, N. J. & Davies, T. J. Herbarium specimens reveal increasing herbivory over the past century. J. Ecol. 107, 105–117 (2019).


    Google Scholar
     

  • Lorieul, T. et al. Toward a large-scale and deep phenological stage annotation of herbarium specimens: case studies from temperate, tropical, and equatorial floras. Appl. Plant Sci. 7, e1233 (2019).


    Google Scholar
     

  • Pauw, A. & Hawkins, J. A. Reconstruction of historical pollination rates reveals linked declines of pollinators and plants. Oikos 120, 344–349 (2011).


    Google Scholar
     

  • Ristaino, J. B., Groves, C. T. & Parra, G. R. PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411, 695–697 (2001).

    CAS 

    Google Scholar
     

  • Bianciotto, V., Selosse, M. A., Martos, F. & Marmeisse, R. Herbaria preserve plant microbiota responses to environmental changes. Trends Plant Sci. 27, 120–123 (2022).

    CAS 

    Google Scholar
     

  • Fatima, T. et al. Microbial endophytes: a hidden plant resident, application and their role in abiotic stress management in plants. J. Ecophysiol. Occup. Health 22, 127–140 (2022).

    CAS 

    Google Scholar
     

  • Edwards-Calma, K. et al. Conservation applications of niche modeling: native and naturalized ferns may compete for limited Hawaiian dryland habitat. Appl. Plant Sci. 2, e11598 (2014).


    Google Scholar
     

  • Miller, T. K., Heberling, J. M., Kuebbing, S. E. & Primack, R. B. Warmer temperatures are linked to widespread phenological mismatch among native and non-native forest plants. J. Ecol. 111, 356–371 (2023).

    CAS 

    Google Scholar
     

  • Park, I. W. et al. Herbarium data accurately predict the timing and duration of population-level flowering displays. Ecography 47, e06961 (2024).


    Google Scholar
     

  • Van Dam, N. M. How plants cope with biotic interactions. Plant Biol. 11, 1–5 (2009).


    Google Scholar
     

  • Garrett, K. A. et al. in Climate Change (eds Nita, M. et al.) 499–513 (Elsevier, 2021).

  • Labandeira, C. The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci. 14, 259–275 (2007).


    Google Scholar
     

  • Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. Herbivory increases diversification across insect clades. Nat. Commun. 6, 8370 (2015).

    CAS 

    Google Scholar
     

  • Segar, J. et al. Divergent roles of herbivory in eutrophying forests. Nat. Commun. 13, 7837 (2022).

    CAS 

    Google Scholar
     

  • Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).


    Google Scholar
     

  • Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).


    Google Scholar
     

  • Castro, C. C. et al. Trophic interactions between plants, pollinators, florivores, and predators: a global systematic review. Biol. J. Linn. Soc. 141, 214–233 (2024).


    Google Scholar
     

  • Bengtsson, J., Fagerström, T. & Rydin, H. Competition and coexistence in plant communities. Trends Ecol. Evol. 9, 246–250 (1994).

    CAS 

    Google Scholar
     

  • Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).

    CAS 

    Google Scholar
     

  • Johnson, C. A., Dutt, P. & Levine, J. M. Competition for pollinators destabilizes plant coexistence. Nature 607, 721–725 (2022).

    CAS 

    Google Scholar
     

  • Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).


    Google Scholar
     

  • Ke, P. J., Miki, T. & Ding, T. S. The soil microbial community predicts the importance of plant traits in plant–soil feedback. N. Phytol. 206, 329–341 (2015).

    CAS 

    Google Scholar
     

  • Yan, X., Levine, J. M. & Kandlikar, G. S. A quantitative synthesis of soil microbial effects on plant species coexistence. Proc. Natl Acad. Sci. USA 119, e2122088119 (2022).

    CAS 

    Google Scholar
     

  • Michaud, T. J., Cline, L. C., Hobbie, E. A., Gutknecht, J. L. & Kennedy, P. G. Herbarium specimens reveal that mycorrhizal type does not mediate declining temperate tree nitrogen status over a century of environmental change. N. Phytol. 242, 1717–1724 (2024).

    CAS 

    Google Scholar
     

  • Eves-van den Akker, S. Plant–nematode interactions. Curr. Opin. Plant Biol. 62, 102035 (2021).

    CAS 

    Google Scholar
     

  • HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).


    Google Scholar
     

  • Sultana, F., Motaher Hossain, M., Kubota, M. & Hyakumach, M. Induction of systemic resistance in Arabidopsis thaliana in response to culture filtrates from a plant growth-promoting fungus, Phoma sp. GS8-3. Plant Biol. 11, 97–104 (2008).


    Google Scholar
     

  • Jones, M. D. & Smith, S. E. Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can. J. Bot. 82, 1089–1109 (2004).


    Google Scholar
     

  • Fontúrbel, F. F., Nespolo, R. F., Amico, G. C. & Watson, D. M. Climate change can disrupt ecological interactions in mysterious ways: using ecological generalists to forecast community-wide effects. Clim. Change Ecol. 2, 100044 (2021).


    Google Scholar
     

  • Currano, E. D., Azevedo-Schmidt, L. E., Maccracken, S. A. & Swain, A. Scars on fossil leaves: an exploration of ecological patterns in plant–insect herbivore associations during the age of angiosperms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 582, 110636 (2021).


    Google Scholar
     

  • Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).

    CAS 

    Google Scholar
     

  • Rull, V. Contributions of paleoecology to Easter Island’s prehistory: a thorough review. Quat. Sci. Rev. 252, 106751 (2021).


    Google Scholar
     

  • Ward, N. & Dirzo, R. The potential of herbarium specimens in capturing historical herbivory: a test of the consequences of global insect decline. Stanford Digital Repository https://purl.stanford.edu/bs716vt4856 (2024).

  • Daru, B. H., Bowman, E. A., Pfister, D. H. & Arnold, A. E. A novel proof-of-concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos. Trans. R. Soc. B 374, 20170395 (2018).


    Google Scholar
     

  • Heberling, J. M. & Burke, D. J. Utilizing herbarium specimens to quantify historical mycorrhizal communities. Appl. Plant Sci. 7, e1223 (2019).


    Google Scholar
     

  • Bieker, V. C. et al. Metagenomic analysis of historical herbarium specimens reveals a postmortem microbial community. Mol. Ecol. Resour. 20, 1206–1219 (2020).

    CAS 

    Google Scholar
     

  • Bieker, V. C. et al. Uncovering the genomic basis of an extraordinary plant invasion. Sci. Adv. 8, eabo5115 (2022).

    CAS 

    Google Scholar
     

  • Park, D. S., Huynh, K. M. & Feng, X. Phenological similarity and distinctiveness facilitate plant invasions. Glob. Ecol. Biogeogr. 33, e13839 (2024).


    Google Scholar
     

  • Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).

    CAS 

    Google Scholar
     

  • Bartlett, K. B., Austin, M. W., Beck, J. B., Zanne, A. E. & Smith, A. B. Beyond the usual climate? Factors determining flowering and fruiting phenology across a genus over 117 years. Am. J. Bot. 110, e16188 (2023).


    Google Scholar
     

  • Funk, V. A. 100 uses for an herbarium: well at least 72. Am. Soc. Plant Taxon. Newslett. 17, 17–19 (2003).


    Google Scholar
     

  • Beauvais, M. P., Pellerin, S., Dubé, J. & Lavoie, C. Herbarium specimens as tools to assess the impact of large herbivores on plant species. Botany 95, 153–162 (2017).


    Google Scholar
     

  • Johnson, A. L., Rebolleda-Gómez, M. & Ashman, T. L. Pollen on stigmas of herbarium specimens: a window into the impacts of a century of environmental disturbance on pollen transfer. Am. Nat. 194, 405–413 (2019).


    Google Scholar
     

  • Petipas, R. H., Antoch, A. A., Eaker, A. A., Kehlet-Delgado, H. & Friesen, M. L. Back to the future: using herbarium specimens to isolate nodule-associated bacteria. Ecol. Evol. 14, e11719 (2024).


    Google Scholar
     

  • Bowman, W. D., Hacker, S. D. & Cain, M. L. Ecology 4th edn (Sinauer Associates, 2017).

  • Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).

    CAS 

    Google Scholar
     

  • Kozlov, M. V. & Zvereva, E. L. in Progress in Botany Vol. 79 (eds Cánovas, F., Lüttge, U. & Matyssek, R.) https://doi.org/10.1007/124_2017_4 (Springer, 2017).

  • Johnson, W. T. & Lyon, H. H. Insects that Feed on Trees and Shrubs 2nd edn, 560 (Cornell Univ. Press, 1991).

  • Labandeira, C. C. & Currano, E. D. The fossil record of plant–insect dynamics. Annu. Rev. Earth Planet. Sci. 41, 287–311 (2013).

    CAS 

    Google Scholar
     

  • Labandeira, C. C., Wilf, P., Johnson, K. R. & Marsh, F. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils. Version 3.0, 25 (Smithsonian Institution, 2007).

  • Jenny, L. A. et al. Herbarium specimens reveal herbivory patterns across the genus Cucurbita. Am. J. Bot. 110, e16126 (2023).

    CAS 

    Google Scholar
     

  • Kozlov, M. V. et al. Biases in estimation of insect herbivory from herbarium specimens. Sci. Rep. 10, 12298 (2020).

    CAS 

    Google Scholar
     

  • Lees, D. C. et al. Tracking origins of invasive herbivores through herbaria and archival DNA: the case of the horse-chestnut leaf miner. Front. Ecol. Environ. 9, 322–328 (2011).


    Google Scholar
     

  • Pellmyr, O., Labandeira, C. C. & Herrera, C. M. (eds) Plant–Animal Interactions: An Evolutionary Approach (Blackwell Science, 2002).

  • Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).


    Google Scholar
     

  • Johnson, M. T. J. Evolutionary ecology of plant defences against herbivores. Funct. Ecol. 25, 305–311 (2011).


    Google Scholar
     

  • Myers, J. H. & Bazely, D. in Phytochemical Induction by Herbivores (eds Tallamy, D. W. & Raupp, M. J.) 325–344 (Wiley, 1991).

  • Kohl, K. D., Miller, A. W. & Dearing, M. D. Evolutionary irony: evidence that ‘defensive’ plant spines act as a proximate cue to attract a mammalian herbivore. Oikos 124, 835–841 (2015).


    Google Scholar
     

  • Heberling, J. M. Herbaria as big data sources of plant traits. Int. J. Plant Sci. 183, 87–118 (2022).


    Google Scholar
     

  • Václavík, T., Beckmann, M., Cord, A. F. & Bindewald, A. M. Effects of UV-B radiation on leaf hair traits of invasive plants — combining historical herbarium records with novel remote sensing data. PLoS ONE 12, e0175671 (2017).


    Google Scholar
     

  • Mithen, R., Bennett, R. & Marquez, J. Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71, 2074–2086 (2010).

    CAS 

    Google Scholar
     

  • Colegate, S. M., Welsh, S. L., Gardner, D. R., Betz, J. M. & Panter, K. E. Profiling of dehydropyrrolizidine alkaloids and their N-oxides in herbarium-preserved specimens of Amsinckia species using HPLC-esi(+)MS. J. Agric. Food Chem. 62, 7382–7392 (2014).

    CAS 

    Google Scholar
     

  • Tasca, J. A. et al. HPLC–MS detection of pyrrolizidine alkaloids and their N-oxides in herbarium specimens dating back to the 1850s. Appl. Plant Sci. 6, e1143 (2018).


    Google Scholar
     

  • Meineke, E. K. & Davies, T. J. Museum specimens provide novel insights into changing plant–herbivore interactions. Philos. Trans. R. Soc. B 374, 20170393 (2019).


    Google Scholar
     

  • Youngsteadt, E., Dale, A. G., Terando, A. J., Dunn, R. R. & Frank, S. D. Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob. Change Biol. 21, 97–105 (2015).


    Google Scholar
     

  • Stothut, M. et al. Recovering plant-associated arthropod communities by eDNA metabarcoding historical herbarium specimens. Curr. Biol. 34, 4318–4324 (2024).

    CAS 

    Google Scholar
     

  • McDonnell, A. J. et al. Exploring Angiosperms353: developing and applying a universal toolkit for flowering plant phylogenomics. Appl. Plant Sci. 9, e11443 (2021).


    Google Scholar
     

  • Gutaker, R. M. & Burbano, H. A. Reinforcing plant evolutionary genomics using ancient DNA. Curr. Opin. Plant Biol. 36, 38–45 (2017).

    CAS 

    Google Scholar
     

  • McLay, T. G. B. et al. New targets acquired: improving locus recovery from the Angiosperms353 probe set. Appl. Plant Sci. 9, e11420 (2021).


    Google Scholar
     

  • Slimp, M., Williams, L. D., Hale, H. & Johnson, M. G. On the potential of Angiosperms353 for population genomic studies. Appl. Plant Sci. 9, e11419 (2021).


    Google Scholar
     

  • Levesque-Beaudin, V. et al. A workflow for expanding DNA barcode reference libraries through ‘museum harvesting’ of natural history collections. Biodivers. Data J. 11, e100677 (2023).


    Google Scholar
     

  • Piñol, J., Mir, G., Gomez-Polo, P. & Agustí, N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 15, 819–830 (2015).


    Google Scholar
     

  • Meineke, E. K., Tomasi, C., Yuan, S. & Pryer, K. M. Applying machine learning to investigate long-term insect–plant interactions preserved on digitized herbarium specimens. Appl. Plant Sci. 8, e11369 (2020).


    Google Scholar
     

  • Ćalić, D., Milojević, J., Belić, M., Miletić, R. & Zdravković-Korać, S. Impact of storage temperature on pollen viability and germinability of four Serbian autochthon apple cultivars. Front. Plant Sci. 12, 709231 (2021).


    Google Scholar
     

  • Robbirt, K. M., Roberts, D. L., Hutchings, M. J. & Davy, A. J. Potential disruption of pollination in a sexually deceptive orchid by climatic change. Curr. Biol. 24, 2845–2849 (2014).

    CAS 

    Google Scholar
     

  • Bell, K. L. et al. Applying pollen DNA metabarcoding to the study of plant–pollinator interactions. Appl. Plant Sci. 5, 6 (2017).


    Google Scholar
     

  • Lowe, A., Harrison, N. & Ashton, P. Using DNA metabarcoding to identify floral visitation by pollinators. Diversity 14, 236 (2022).

    CAS 

    Google Scholar
     

  • Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).


    Google Scholar
     

  • Pornon, A. et al. DNA metabarcoding data unveils invisible pollination networks. Sci. Rep. 7, 16828 (2017).


    Google Scholar
     

  • Park, I. W. & Schwartz, M. D. Long-term herbarium records reveal temperature-dependent changes in flowering phenology in the southeastern USA. Int. J. Biometeorol. 59, 347–355 (2015).


    Google Scholar
     

  • Witt, T., Jürgens, A. & Gottsberger, G. Nectar sugar composition of European Caryophylloideae (Caryophyllaceae) in relation to flower length, pollination biology and phylogeny. J. Evol. Biol. 26, 2244–2259 (2013).

    CAS 

    Google Scholar
     

  • Baker, H. G., Baker, I. & Hodges, S. A. Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30, 559–586 (1998).


    Google Scholar
     

  • Tucker, A. O. & Calabrese, L. The Use and Methods of Making a Herbarium/Plant Specimens: an Herb Society of America Guide (The Herb Society of America, 2005).

  • Cascales, E. V. et al. Fructooligosaccharides stability during the processing and the shelf life of an aseptically packed commercial pineapple nectar. J. Food Nutr. Res. 9, 193–198 (2021).

    CAS 

    Google Scholar
     

  • Łuczak, P., Klewicki, R. & Klewicka, E. Stability of fructooligosaccharides in convectively dried fruits after initial osmoconcentration. Food Bioprocess. Technol. 16, 2511–2520 (2023).


    Google Scholar
     

  • Davis, C. C., Willis, C. G., Connolly, B., Kelly, C. & Ellison, A. M. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. Am. J. Bot. 102, 1599–1609 (2015).


    Google Scholar
     

  • Jones, C. A. & Daehler, C. C. Herbarium specimens can reveal impacts of climate change on plant phenology: a review of methods and applications. PeerJ 6, e4576 (2018).


    Google Scholar
     

  • Ahlstrand, N. I., Elvery, H. M. & Primack, R. B. Grass flowering times determined using herbarium specimens for modeling grass pollen under a warming climate. Sci. Total Environ. 885, 163824 (2023).


    Google Scholar
     

  • Williams, T. M., Schlichting, C. D. & Holsinger, K. E. Herbarium records demonstrate changes in flowering phenology associated with climate change over the past century within the Cape Floristic Region, South Africa. Clim. Change Ecol. 1, 100006 (2021).


    Google Scholar
     

  • Kudo, G. & Cooper, E. J. When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction. Proc. R. Soc. B 286, 20190573 (2019).


    Google Scholar
     

  • Freimuth, J., Bossdorf, O., Scheepens, J. F. & Willems, F. M. Climate warming changes synchrony of plants and pollinators. Proc. R. Soc. B 289, 20212142 (2022).


    Google Scholar
     

  • Biederman, L. et al. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the US Central Plains. PLoS ONE 12, e0178440 (2017).


    Google Scholar
     

  • Forsman, A. M., Savage, A. E., Hoenig, B. D. & Gaither, M. R. DNA metabarcoding across disciplines: sequencing our way to greater understanding across scales of biological organization. Integr. Comp. Biol. 62, 191–198 (2022).

    CAS 

    Google Scholar
     

  • Bell, K. et al. Pollen DNA metabarcoding and related methods in global change ecology: prospects, challenges, and progress. Authorea https://doi.org/10.22541/au.164346764.44098850/v1 (2022).

  • Bell, K. L. et al. Plants, pollinators and their interactions under global ecological change: the role of pollen DNA metabarcoding. Mol. Ecol. 32, 6345–6362 (2023).

    CAS 

    Google Scholar
     

  • Balmaki, B. et al. Modern approaches for leveraging biodiversity collections to understand change in plant–insect interactions. Front. Ecol. Evol. 10, 924941 (2022).


    Google Scholar
     

  • Rakosy, D., Ashman, T. L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Funct. Ecol. 37, 218–233 (2023).

    CAS 

    Google Scholar
     

  • Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    CAS 

    Google Scholar
     

  • Harrison, J. G. & Griffin, E. A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ. Microbiol. 22, 2107–2123 (2020).


    Google Scholar
     

  • Trivellone, V., Wei, W., Filippin, L. & Dietrich, C. H. Screening potential insect vectors in a museum biorepository reveals undiscovered diversity of plant pathogens in natural areas. Ecol. Evol. 11, 6493–6503 (2021).


    Google Scholar
     

  • Yoshida, K. et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2, e00731 (2013).


    Google Scholar
     

  • Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. 10, e1004028 (2014).


    Google Scholar
     

  • Martin, M. D., Ho, S. Y., Wales, N., Ristaino, J. B. & Gilbert, M. T. P. Persistence of the mitochondrial lineage responsible for the Irish potato famine in extant new world Phytophthora infestans. Mol. Biol. Evol. 31, 1414–1420 (2014).

    CAS 

    Google Scholar
     

  • Martin, M. D. et al. Genomic characterization of a South American phytophthora hybrid mandates reassessment of the geographic origins of Phytophthora infestans. Mol. Biol. Evol. 33, 478–491 (2016).

    CAS 

    Google Scholar
     

  • Campos, P. E. et al. First historical genome of a crop bacterial pathogen from herbarium specimen: insights into citrus canker emergence. PLoS Pathog. 17, e1009714 (2021).

    CAS 

    Google Scholar
     

  • Campos, P. E. et al. Herbarium specimen sequencing allows precise dating of Xanthomonas citri pv. citri diversification history. Nat. Commun. 14, 4306 (2023).

    CAS 

    Google Scholar
     

  • Ristaino, J. B., Hu, C. H. & Fitt, B. D. Evidence for presence of the founder Ia mtDNA haplotype of Phytophthora infestans in 19th century potato tubers from the Rothamsted archives. Plant Pathol. 62, 492–500 (2013).

    CAS 

    Google Scholar
     

  • May, K. J. & Ristaino, J. B. Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish potato famine. Mycol. Res. 108, 471–479 (2004).

    CAS 

    Google Scholar
     

  • Agan, A., Tedersoo, L., Hanso, M. & Drenkhan, R. Traces of Hymenoscyphus fraxineus in Northeastern Europe extend further back in history than expected. Plant Dis. 107, 344–349 (2023).

    CAS 

    Google Scholar
     

  • Gross, A. et al. Hidden invasion and niche contraction revealed by herbaria specimens in the fungal complex causing oak powdery mildew in Europe. Biol. Invasions 23, 885–901 (2021).


    Google Scholar
     

  • Hubbes, M. The American elm and Dutch elm disease. For. Chron. 75, 265–273 (1999).


    Google Scholar
     

  • Stone, A. Organic management of late blight of potato and tomato (Phytophthora infestans). extension.org http://www.extension.org/article/18361 (accessed 10 July 2012).

  • Shweta, S. et al. Herbaria: a valuable resource of the time treasured historic plant specimens with boundless research potential for environmental sustainability. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05301-1 (2024).

  • Miller, S., Masuya, H., Zhang, J., Walsh, E. & Zhang, N. Real-time PCR detection of dogwood anthracnose fungus in historical herbarium specimens from Asia. PLoS ONE 11, e0154030 (2016).


    Google Scholar
     

  • Pastirčáková, K. et al. Global distribution of Erysiphe platani: new records, teleomorph formation and re-examination of herbarium collections. Cryptogam. Mycol. 35, 163–176 (2014).


    Google Scholar
     

  • Dvořák, P., Hašler, P. & Poulíčková, A. New insights into the genomic evolution of cyanobacteria using herbarium exsiccatae. Eur. J. Phycol. 55, 30–38 (2020).


    Google Scholar
     

  • Sundelin, T. et al. A revision of the history of the Colletotrichum acutatum species complex in the Nordic countries based on herbarium specimens. FEMS Microbiol. Lett. 362, fnv130 (2015).


    Google Scholar
     

  • Hobbie, E. A., Chen, J. & Hasselquist, N. J. Fertilization alters nitrogen isotopes and concentrations in ectomycorrhizal fungi and soil in pine forests. Fungal Ecol. 39, 267–275 (2019).


    Google Scholar
     

  • Kranabetter, J. M., Harman-Denhoed, R. & Hawkins, B. J. Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C: N: P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. N. Phytol. 221, 482–492 (2019).

    CAS 

    Google Scholar
     

  • Rudgers, J. A. et al. Climate disruption of plant–microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).


    Google Scholar
     

  • Singh, A. & Shourie, A. in Climate Change and the Microbiome, Soil Biology Vol. 63 (eds Choudhary, D. K., Mishra, A. & Varma, A.) 155–186 (Springer, 2021).

  • Shree, B., Jayakrishnan, U. & Bhushan, S. Impact of key parameters involved with plant–microbe interaction in context to global climate change. Front. Microbiol. 13, 1008451 (2022).


    Google Scholar
     

  • Van Nuland, M. E., Qin, C., Pellitier, P. T., Zhu, K. & Peay, K. G. Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range shifts. Proc. Natl Acad. Sci. USA 121, e2308811121 (2024).


    Google Scholar
     

  • Gurevitch, J., Scheiner, S. M. & Fox, G. A. The Ecology of Plants 3rd edn (Oxford Univ. Press, 2020).

  • Smith, H. in Photomorphogenesis in Plants (eds Kendrick, R. E. & Kronenberg, G. H. M.) https://doi.org/10.1007/978-94-011-1884-2_15 (Springer, 1994).

  • Mitchell, R. J., Flanagan, R. J., Brown, B. J., Waser, N. M. & Karron, J. D. New frontiers in competition for pollination. Ann. Bot. 103, 1403–1413 (2009).


    Google Scholar
     

  • Schnell, D. E. Carnivorous Plants of the United States and Canada 2nd edn (Timber Press, 2002).

  • Janzen, D. H. How to be a fig. Annu. Rev. Ecol. Syst. 10, 13–51 (1979).


    Google Scholar
     

  • Aschehoug, E. T. et al. The mechanisms and consequences of interspecific competition among plants. Annu. Rev. Ecol. Evol. Syst. 47, 263–281 (2016).


    Google Scholar
     

  • Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).


    Google Scholar
     

  • Daru, B. H. et al. Widespread sampling biases in herbaria revealed from large-scale digitization. N. Phytol. 217, 939–955 (2018).


    Google Scholar
     

  • Greve, M. et al. Realising the potential of herbarium records for conservation biology. S. Afr. J. Bot. 105, 317–323 (2016).


    Google Scholar
     

  • Park, D. S. et al. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philos. Trans. R. Soc. B 374, 20170394 (2018).


    Google Scholar
     

  • Délye, C., Deulvot, C. & Chauvel, B. DNA analysis of herbarium specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides. PLoS ONE 8, e75117 (2013).


    Google Scholar
     

  • Kreiner, J. M. et al. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. Science 378, 1079–1085 (2022).

    CAS 

    Google Scholar
     

  • Kühn, P., Umazekabiri, R., Römermann, C., Bruelheide, H. & Wesche, K. Nitrogen content of herbarium specimens from arable fields and mesic meadows reflect the intensifying agricultural management during the 20th century. J. Ecol. 113, 555–569 (2025).


    Google Scholar
     

  • Büttner, M., Weibel, U., Jutzi, M., Bergamini, A. & Holderegger, R. A 150-year-old herbarium and floristic data testify regional species decline. Biol. Conserv. 272, 109609 (2022).


    Google Scholar
     

  • Brewer, J. S. & Schlauer, J. in Carnivorous Plants: Physiology, Ecology, and Evolution (eds Ellison, A. M. & Adamec, L.) 7–21 (Oxford Univ. Press, 2018).

  • Skates, L. M. et al. An ecological perspective on ‘plant carnivory beyond bogs’: nutritional benefits of prey capture for the Mediterranean carnivorous plant Drosophyllum lusitanicum. Ann. Bot. 124, 65–76 (2019).

    CAS 

    Google Scholar
     

  • Fleischmann, A. & Heubl, G. Overcoming DNA extraction problems from carnivorous plants. An. del Jardín Botánico de Madr. 66, 209–215 (2009).


    Google Scholar
     

  • Neyland, R., Bushnell, J. & Tangkham, W. An updated taxonomic treatment of the natural hybrids of Sarracenia L. (Sarraceniaceae). Carnivorous Plant. Newsl. 44, 1 (2015).


    Google Scholar
     

  • Robbirt, K. M., Davy, A. J., Hutchings, M. J. & Roberts, D. L. Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J. Ecol. 99, 235–241 (2011).


    Google Scholar
     

  • Everingham, S. E., Blick, R. A. J., Sabot, M. E. B., Slavich, E. & Moles, A. T. Southern hemisphere plants show more delays than advances in flowering phenology. J. Ecol. 111, 380–390 (2023).


    Google Scholar
     

  • Ghazoul, J. Buzziness as usual? Questioning the global pollination crisis. Trends Ecol. Evol. 20, 367–373 (2005).


    Google Scholar
     

  • Hailay Gebremariam, G. A systematic review of insect decline and discovery: trends, drivers, and conservation strategies over the past two decades. Psyche J. Entomol. 2024, 5998962 (2024).


    Google Scholar
     

  • CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl Acad. Sci. USA 111, 4916–4921 (2014).

    CAS 

    Google Scholar
     

  • Tylianakis, J. M. The global plight of pollinators. Science 339, 1532–1533 (2013).

    CAS 

    Google Scholar
     

  • Hayat, K. et al. in New Frontiers in PlantEnvironment Interactions: Innovative Technologies and Developments (ed. Aftab, T.) 535–550 (Springer Nature, 2023).

  • Groner, M. L. et al. Warming sea surface temperatures fuel summer epidemics of eelgrass wasting disease. Mar. Ecol. Prog. Ser. 679, 47–58 (2021).


    Google Scholar
     

  • Mutz, J., Heiling, J. M. & Underwood, N. Some neighbours are better than others: variation in associational effects among plants in an old field community. J. Ecol. 10, 2118–2131 (2022).


    Google Scholar
     

  • Wise, M. J. & Mudrak, E. L. Nutrient stress can have opposite effects on the ability of plants to tolerate foliar herbivory and floral herbivory. Oecologia 202, 783–794 (2023).


    Google Scholar
     

  • Blumenthal, D. M. & Kray, J. A. in Invasive Species and Global Climate Change (eds Ziska, L. H. & Dukes, J. S.) 62–78 (CAB International, 2014).

  • Finch, D. M. et al. in Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector (eds Poland, T. M. et al.) 57–84 (Springer International Publishing, 2021).

  • Barrett, C. F. et al. Digitized collections elucidate invasion history and patterns of awn polymorphism in Microstegium vimineum. Am. J. Bot. 109, 689–705 (2022).

    CAS 

    Google Scholar
     

  • Tsai, H. et al. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife 9, e57022 (2020).

    CAS 

    Google Scholar
     

  • Mattila, A. L. K. et al. The potential for evolutionary rescue in an Arctic seashore plant threatened by climate change. Proc. R. Soc. B 291, 2032 (2024).


    Google Scholar
     

  • Geml, J. et al. Long-term warming alters richness and composition of taxonomic and functional groups of fungi. FEMS Microbiol. Ecol. 91, fiv095 (2015).


    Google Scholar
     

  • Geml, J., Semenova, T. A., Morgado, L. N. & Welker, J. M. Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming. Biol. Lett. 12, 20160503 (2016).


    Google Scholar
     

  • Hall, A. V. Pest control in herbaria. Taxon 37, 885–907 (1988).


    Google Scholar
     

  • Azevedo-Schmidt, L., Meineke, E. K. & Currano, E. D. Insect herbivory within modern forests is greater than fossil localities. Proc. Natl Acad. Sci. USA 119, e2202852119 (2022).

    CAS 

    Google Scholar
     

  • Donovan, M. P., Wilf, P., Iglesias, A., Cúneo, N. R. & Labandeira, C. C. Insect herbivore and fungal communities on Agathis (Araucariaceae) from the latest cretaceous to recent. PhytoKeys 226, 109 (2023).


    Google Scholar
     

  • Giraldo, L. A., Wilf, P., Donovan, M. P., Kooyman, R. M. & Gandolfo, M. A. Fossil insect-feeding traces indicate unrecognized evolutionary history and biodiversity on Australia’s iconic Eucalyptus. N. Phytol. 245, 1762–1773 (2025).

    CAS 

    Google Scholar
     

  • Arens, N. C. & Traverse, A. The effect of microwave oven‐drying on the integrity of spore and pollen exines in herbarium specimens. Taxon 38, 394–403 (1989).


    Google Scholar
     

  • Zhigila, D. A., Sawa, F. B. J., Abdul, S. D. & Danailu, G. Diversity of pollen morphology in accessions of Sesamum indicum L. Int. J. Mod. Bot. 4, 22–28 (2014).


    Google Scholar
     

  • Shepherd, L. D. A non-destructive DNA sampling technique for herbarium specimens. PLoS ONE 12, e0183555 (2017).


    Google Scholar
     

  • Davis, C. C., Sessa, E., Paton, A., Antonelli, A. & Teisher, J. K. Guidelines for the effective and ethical sampling of herbaria. Nat. Ecol. Evol. 9, 196–203 (2024).


    Google Scholar
     

  • Kasban, H., El-Bendary, M. A. M. & Salama, D. H. A comparative study of medical imaging techniques. Int. J. Inf. Sci. Intell. Syst. 4, 37–58 (2015).


    Google Scholar
     

  • Morrant, D. S., Schumann, R. & Petit, S. Field methods for sampling and storing nectar from flowers with low nectar volumes. Ann. Bot. 103, 533–542 (2009).

    CAS 

    Google Scholar
     

  • Martin, R. et al. Optimising recovery of DNA from minimally invasive sampling methods: efficacy of buccal swabs, preservation strategy and DNA extraction approaches for amphibian studies. Ecol. Evol. 14, e70294 (2024).

    CAS 

    Google Scholar
     

  • Burgdorf, R. J., Laing, M. D., Morris, C. D. & Jamal-Ally, S. F. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies. Braz. J. Microbiol. 45, 977–983 (2014).

    CAS 

    Google Scholar
     

  • Schmidt-Lebuhn, A. N., Knerr, N. J. & Kessler, M. Non-geographic collecting biases in herbarium specimens of Australian daisies (Asteraceae). Biodivers. Conserv. 22, 905–919 (2013).


    Google Scholar
     

  • Li, Z.-H., Wang, Q., Ruan, X., Pan, C.-D. & Jiang, D.-A. Phenolics and plant allelopathy. Molecules 15, 8933–8952 (2010).

    CAS 

    Google Scholar
     

  • Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).


    Google Scholar
     

  • Drábková, L. Z. DNA extraction from herbarium specimens. Methods Mol. Biol. 1115, 69–84 (2014).


    Google Scholar
     

  • Byers, D. L. Studying plant–pollinator interactions in a changing climate: a review of approaches. Appl. Plant Sci. 5, 1700012 (2017).


    Google Scholar
     

  • Gouker, F. E., Guo, Y., Svoboda, H. T. & Pooler, M. R. Optimizing efficient PCR-amplifiable DNA extraction from herbarium specimens. Appl. Plant Sci. 11, e11521 (2023).

    CAS 

    Google Scholar
     

  • Burbano, H. A. & Gutaker, R. M. Ancient DNA genomics and the renaissance of herbaria. Science 382, 59–63 (2023).

    CAS 

    Google Scholar
     

  • Rabeler, R. K. et al. Herbarium practices and ethics, III. Syst. Bot. 44, 7–13 (2019).


    Google Scholar
     

  • Papalini, S. et al. Challenges and opportunities behind the use of herbaria in paleogenomics studies. Plants 12, 3452 (2023).

    CAS 

    Google Scholar
     

  • Keddy, P. A. Competition (Kluwer Academic, 2001).

  • Lemoine, N. P., Burkepile, D. E. & Parker, J. D. Variable effects of temperature on insect herbivory. PeerJ 2, e376 (2014).


    Google Scholar
     

  • Triki, A., Bouaziz, B., Gaikwad, J. & Mahdi, W. Deep leaf: mask R-CNN based leaf detection and segmentation from digitized herbarium specimen images. Pattern Recognit. Lett. 150, 76–83 (2021).


    Google Scholar
     

  • Gautam, A. K. & Avasthi, S. in Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology (eds Kumar, A. et al.) 241–283 (Elsevier, 2019).



  • Source link

    More From Forest Beat

    Conserve marine migratory species to protect ecological links between land and...

    At the third United Nations Ocean Conference in June, UN member states committed to reducing the flow of pollutants from rivers to oceans...
    Biodiversity
    0
    minutes

    Elucidating the impact of soil’s physico-chemical properties and seasonal variation on...

    Earthworm populationA total of 347 earthworms were collected, (217 from agricultural sites and 130 from non-agricultural sites). The earthworms belonged to three ecological...
    Biodiversity
    11
    minutes

    What it’s like fighting racism and sexism in shark science

    Growing up in the forests of Chicago, Illinois, and the deserts of Phoenix, Arizona, Jaida Elcock never had much access to the...
    Biodiversity
    5
    minutes

    Endemic anoa and babirusa show surprising resilience on small islands

    ● Small-island populations are thriving in their small numbers. ● Small islands can be natural refugia for endangered megafauna. ● Protecting...
    Biodiversity
    3
    minutes
    spot_imgspot_img