Unlocking the African bioeconomy and strengthening biodiversity conservation through genomics and bioinformatics

[ad_1]

  • Ebenezer, T. E. et al. Africa: sequence 100,000 species to safeguard biodiversity. Nature 603, 388–392 (2022).

    CAS 

    Google Scholar
     

  • Sharaf, A. et al. Bridging the gap in African biodiversity genomics and bioinformatics. Nat. Biotechnol. 41, 1348–1354 (2023).

    CAS 

    Google Scholar
     

  • Sharaf, A. et al. Establishing African genomics and bioinformatics programs through annual regional workshops. Nat. Genet. 56, 1556–1565 (2024).

    CAS 

    Google Scholar
     

  • Mougenot, B. & Doussoulin, J.-P. Conceptual evolution of the bioeconomy: a bibliometric analysis. Environ. Dev. Sustain. 24, 1031–1047 (2022).


    Google Scholar
     

  • Global Bioeconomy Summit. Communiqué Global Bioeconomy Summit 2018: Innovation in the Global Bioeconomy for Sustainable and Inclusive Transformation and Wellbeing(Global Bioeconomy Summit, accessed 12 Jan 2025); https://www.biooekonomierat.de/media/pdf/archiv/international-gbs-2018-communique.pdf (2018).

  • Patermann, C. & Aguilar, A. A bioeconomy for the next decade. EFB Bioecon. J. 1, 100005 (2021).


    Google Scholar
     

  • Nature Finance & Getúlio Vargas Foundation. Preliminary Stocktake of G20 Strategies and Practices: a Contribution to the Brazilian G20 Presidency’s Global Initiative on Bioeconomy(Nature Finance & Getúlio Vargas Foundation, accessed 13 Jan 2025). https://www.naturefinance.net/wp-content/uploads/2024/05/ENG-TheGlobalBioeconomy_FINAL.pdf (2025).

  • World Bioeconomy Forum. A Status of the Global Bioeconomy (World Bioeconomy Forum, accessed 28 Dec 2024) https://wcbef.com/tuote/a-status-of-the-global-bioeconomy/ (2024).

  • El-Chichakli, B., Von Braun, J., Lang, C., Barben, D. & Philp, J. Policy: five cornerstones of a global bioeconomy. Nature 535, 221–223 (2016).

    CAS 

    Google Scholar
     

  • Gould, H., Kelleher, L. & O’Neill, E. Trends and policy in bioeconomy literature: a bibliometric review. EFB Bioecon. J. 3, 100047 (2023).


    Google Scholar
     

  • Jiménez-Sánchez, G. & Philp, J. Omics and the bioeconomy: applications of genomics hold great potential for a future bio-based economy and sustainable development. EMBO Rep. 16, 17–20 (2015).


    Google Scholar
     

  • Chitaka, T. Y. & Schenck, C. Developing country imperatives in the circular bioeconomy: a review of the South African case. Environ. Dev. 45, 100812 (2023).


    Google Scholar
     

  • Food and Agriculture Organization of the United Nations. Assessing the Contribution of Bioeconomy to Countries’ Economy: a Brief Review of National Frameworks (Food and Agriculture Organization of the United Nations, accessed 12 Jan 2025) https://www.fao.org/3/I9580EN/i9580en.pdf (2018).

  • Morris, E. J. Moving Africa towards a knowledge-based bio-economy. In Biotechnology in Africa Vol. 7 (eds Wambugu, F. & Kamanga, D.) 69–93 (Springer International Publishing, Cham, 2014).

  • Mulder, N. J. et al. The development of computational biology in South Africa: successes achieved and lessons learnt. PLoS Comput. Biol. 12, e1004395 (2016).


    Google Scholar
     

  • Pauwels, E. & Tilmes, K. The Artificial Intelligence—Biotech Revolution in Africa. In Africa–Europe Cooperation and Digital Transformation (eds. Daniels, C., Erforth, B. & Teevan, C.) 50–65 https://doi.org/10.4324/9781003274322 (Routledge, London, 2022).

  • Aidoo, R., Kwofie, E. M., Glatzel, K. & Ecuru, J. Bioeconomy: a path to African food system transformation. In African Food Systems Transformation and the Post-Malabo Agenda (eds Ulimwengu, J. M., Kwofie, E. M. & Collins, J.) Ch. 10, 173–188 (AKADEMIYA2063; International Food Policy Research Institute (IFPRI), Kigali, Rwanda; Washington, DC) https://agris.fao.org/search/en/providers/122566/records/6582fba8ebe24a6dee898d70 (2023).

  • Feleke, S., Cole, S. M., Sekabira, H., Djouaka, R. & Manyong, V. Circular bioeconomy research for development in sub-Saharan Africa: innovations, gaps, and actions. Sustainability 13, 1926 (2021).


    Google Scholar
     

  • Oguntuase, O. J. Bioeconomy for sustainable development in Africa—state of production determinants and future directions. Stud. Ekonom. Reg. 13, 1–14 (2020).


    Google Scholar
     

  • Oguntuase, O. J. & Adu, O. B. Bioeconomy as climate action: how ready are African countries? In African Handbook of Climate Change Adaptation (eds. Leal Filho, W., Oguge, N., Ayal, D., Adeleke, L. & Da Silva, I.) 1–15 (Springer International Publishing, Cham 2021).

  • MarketsandMarkets. Genomics Market Growth, Drivers, And Opportunities https://www.marketsandmarkets.com/Market-Reports/genomics-market-613.html (MarketsandMarkets, 2024).

  • Walsh, K. & Spazzoli, R. Assessing the Economic Impact of the South African Beef Genomics Programme https://www.novaeconomics.co.za/our-work/705-2 (2018).

  • Omotoso, O. E. et al. Bridging the genomic data gap in Africa: implications for global disease burdens. Global Health 18, 103 (2022).


    Google Scholar
     

  • Carstens, N., Glanzmann, B., Kinnear, C. & Uren, C. Next-generation sequencing technologies: implementation in developing countries. In Population Genomics in the Developing World (eds Patrinos, G.P., Möller, M. & Uren, C.) 83–90 https://doi.org/10.1016/B978-0-443-18546-5.00005-X (Academic Press, 2025).

  • Wudil, A. H., Usman, M., Rosak-Szyrocka, J., Pilař, L. & Boye, M. Reversing years for global food security: a review of the food security situation in Sub-Saharan Africa (SSA). IJERPH 19, 14836 (2022).


    Google Scholar
     

  • Adepoju, P. Africa’s future depends on government-funded R&D. Nat. Africa https://doi.org/10.1038/D44148-022-00134-4 (2022)

  • Okoye, K., Nganji, J. T., Escamilla, J., Fung, J. M. & Hosseini, S. Impact of global government investment on education and research development: a comparative analysis and demystifying the science, technology, innovation, and education conundrum. Global Transit. 4, 11–27 (2022).

    CAS 

    Google Scholar
     

  • Caelers, D. & Okoth, D. Research funding in Africa: navigating sustainability and shifting perspectives. Nat Africa https://doi.org/10.1038/D44148-023-00360-4 (2023)

  • Leontief, W. W. Quantitative input and output relations in the economic systems of the United States. Rev. Econ. Stat. 18, 105 (1936).


    Google Scholar
     

  • Neugarten, R. A. et al. Rapid assessment of ecosystem service co-benefits of biodiversity priority areas in Madagascar. PLoS ONE 11, e0168575 (2016).


    Google Scholar
     

  • Otieno, J. O. Challenges and current strategies in biodiversity conservation in Kenya: a review. OALib 10, 1–17 (2023).


    Google Scholar
     

  • Adebamowo, S. N. et al. Implementation of genomics research in Africa: challenges and recommendations. Global Health Action 11, 1419033 (2018).


    Google Scholar
     

  • Oboh, M. A. et al. Translation of genomic epidemiology of infectious pathogens: enhancing African genomics hubs for outbreaks. Int. J. Infect. Dis. 99, 449–451 (2020).

    CAS 

    Google Scholar
     

  • Acevedo, M. et al. A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat. Plants 6, 1231–1241 (2020).


    Google Scholar
     

  • Bond, M. R. & Scott, D. Digital biopiracy and the (dis)assembling of the Nagoya Protocol. Geoforum 117, 24–32 (2020).


    Google Scholar
     

  • Xu, H. Does government support affect private partners’ profitability in public–private partnerships? Evidence from China. Humanit. Soc. Sci. Commun. 10, 1–10 (2023).

    CAS 

    Google Scholar
     

  • Proestou, M., Schulz, N. & Feindt, P. H. A global analysis of bioeconomy visions in governmental bioeconomy strategies. Ambio 53, 376–388 (2024).


    Google Scholar
     

  • Bio and Emerging Technology Institute. Ethiopian Bioeconomy Strategy. MinT. https://www.betin.gov.et/wp-content/uploads/2024/11/Draft-Ethiopian-Bioeconomy-Strategy.pdf (Bio and Emerging Technology Institute, 2024).

  • Malabo Montpellier Panel. ADOPT: Policy Innovations to Unlock Climate Finance for Resilient Food Systems in Africa (Malabo Montpellier Panel, accessed 13 Jan 2025) https://reliefweb.int/report/world/adopt-policy-innovations-unlock-climate-finance-resilient-food-systems-africa (2022).

  • Glatzel, K. et al. Bioeconomy Pathways: Experience from Africa, Asia, and Latin America https://hdl.handle.net/10568/155083 (2024).

  • Adeleke, B., Robertson-Andersson, D., Moodley, G. & Taylor, S. Aquaculture in Africa: a comparative review of Egypt, Nigeria, and Uganda Vis-À-Vis South Africa. Rev. Fish. Sci. Aquacult. 29, 167–197 (2021).


    Google Scholar
     

  • Matekenya, W. & Ncwadi, R. Impact of financing aquaculture on selected economic indicators in South Africa: cointegration approach. J. Appl. Aquacult. 36, 193–214 (2022).


    Google Scholar
     

  • Tshilate, T. S., Ishengoma, E. & Rhode, C. A first annotated genome sequence for Haliotis midae with genomic insights into abalone evolution and traits of economic importance. Mar. Genom. 70, 101044 (2023).

    CAS 

    Google Scholar
     

  • Tshilate, T. S., Ishengoma, E. & Rhode, C. Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae). Animal Genet. 55, 744–760 (2024).

    CAS 

    Google Scholar
     

  • Henriques, R. et al. Spatio-temporal genetic structure and the effects of long-term fishing in two partially sympatric offshore demersal fishes. Mol. Ecol. 25, 5843–5861 (2016).


    Google Scholar
     

  • Forde, S. et al. Management and conservation implications of cryptic population substructure for two commercially exploited fishes (Merluccius spp.) in southern Africa. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13820 (2023).

  • Darias, M. J., Brink-Hull, M., Bach, P. & Macey, B. M. Accelerating Transformation in Aquatic Food Systems Through Holistic And Inclusive Innovation: Building And Strengthening Innovation Ecosystems https://ird.hal.science/ird-04832297 (2024).

  • O’Donohoe, P. et al. Five Integrated Multitrophic Aquaculture Laboratories, One Goal—Resilient Aquaculture in the Face of Emerging Threats. ASTRAL Project https://www.researchgate.net/profile/Tomas-Chalde/publication/377804841_FIVE_INTEGRATED_MULTITROPHIC_AQUACULTURE_LABORATORIES_ONE_GOAL_-RESILIENT_AQUACULTURE_IN_THE_FACE_OF_EMERGING_THREATS_ASTRAL_PROJECT/links/65b8ff3a79007454974f201d/FIVE-INTEGRATED-MULTITROPHIC-AQUACULTURE-LABORATORIES-ONE-GOAL-RESILIENT-AQUACULTURE-IN-THE-FACE-OF-EMERGING-THREATS-ASTRAL-PROJECT.pdf (2024).

  • East African Community. The East African Regional Bioeconomy Strategy 2021/22–2031/32 (East African Community (EAC), 2022).

  • Mensah, A. M. & Gordon, C. Strategic partnerships between universities and non-academic institutions for sustainability and innovation: insights from the University of Ghana. In Sustainability Challenges in Sub-Saharan Africa I: Science for Sustainable Societies. 245–278 https://doi.org/10.1007/978-981-15-4458-3_8 (Springer, Singapore 2020).

  • Ghildiyal, K. et al. Genomic insights into the conservation of wild and domestic animal diversity: a review. Gene 886, 147719 (2023).

    CAS 

    Google Scholar
     

  • Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).

    CAS 

    Google Scholar
     

  • Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    CAS 

    Google Scholar
     

  • Rege, J. E. O. The state of African cattle genetic resources I. Classification framework and identification of threatened and extinct breeds. Animal Genet. Resour. Inf. 25, 1–25 (1999).


    Google Scholar
     

  • Rege, J. E. O. & Tawah, C. L. The state of African cattle genetic resources II. Geographical distribution, characteristics and uses of present-day breeds and strains. Animal Genet. Resour. Inf. 26, 1–25 (1999).


    Google Scholar
     

  • Houaga, I. et al. High Quality Genome Assemblies of African Cattle Breeds using PacBio HiFi Sequencing https://doi.org/10.1101/2025.04.17.649430 (2025).

  • Friedrich, J., Liu, S., Fang, L., Prendergast, J. & Wiener, P. Insights into trait-association of selection signatures and adaptive eQTL in indigenous African cattle. BMC Genom. 25, 981 (2024).

    CAS 

    Google Scholar
     

  • Sinha, P. et al. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits. Theor. Appl. Genet. 134, 1829–1843 (2021).

    CAS 

    Google Scholar
     

  • Ghavi Hossein-Zadeh, N. An overview of recent technological developments in bovine genomics. Vet. Animal Sci. 25, 100382 (2024).


    Google Scholar
     

  • Kidambasi, K. O., Masiga, D. K., Villinger, J., Carrington, M. & Bargul, J. L. Detection of blood pathogens in camels and their associated ectoparasitic camel biting keds, Hippobosca camelina: the potential application of keds in xenodiagnosis of camel haemopathogens. AAS Open Res. 2, 164 (2020).


    Google Scholar
     

  • Adeoba, M., Tesfamichael, S. G. & Yessoufou, K. Preserving the tree of life of the fish family Cyprinidae in Africa in the face of the ongoing extinction crisis. Genome 62, 170–182 (2019).


    Google Scholar
     

  • Doungous, O. et al. Cassava mosaic disease and its whitefly vector in Cameroon: incidence, severity and whitefly numbers from field surveys. Crop Prot. 158, 106017 (2022).


    Google Scholar
     

  • Monteiro, F. et al. Tracking cashew economically important diseases in the West African region using metagenomics. Front. Plant Sci. 6, https://doi.org/10.3389/fpls.2015.00482 (2015)

  • Oginyi, J. C., Chukwu, S. C., Paul, K. U. & Mkpuma, K. C. Genetic diversity and stability analysis based on agro-morphological traits among rice genotypes developed through marker-assisted backcrossing. Int. J. Sci. Rep. 10, 148–155 (2024).


    Google Scholar
     

  • El Faqer, A., Rabeh, K., Alami, M., Filali-Maltouf, A. & Belkadi, B. In silico identification and characterization of fatty acid desaturase (FAD) genes in Argania spinosa L. skeels: implications for oil quality and abiotic stress. Bioinform. Biol. Insights 18, 11779322241248908 (2024).


    Google Scholar
     

  • Elias, M. et al. Multi-locus genome-wide association study reveal genomic regions underlying root system architecture traits in Ethiopian sorghum germplasm. Plant Genome 17, e20436 (2024).

    CAS 

    Google Scholar
     

  • Habimana, V. et al. Genes and models for estimating genetic parameters for heat tolerance in dairy cattle. Front. Genet. 14, https://doi.org/10.3389/fgene.2023.1127175 (2023).

  • Ouhrouch, A. et al. Genomic uniqueness of local sheep breeds from Morocco. Front. Genet. 12, https://doi.org/10.3389/fgene.2021.723599 (2021).

  • Kusza, S., Badaoui, B. & Wanjala, G. Insights into the genomic homogeneity of Moroccan indigenous sheep breeds though the lens of runs of homozygosity. Sci. Rep. 14, 16515 (2024).

    CAS 

    Google Scholar
     

  • Benjelloun, B. et al. An evaluation of sequencing coverage and genotyping strategies to assess neutral and adaptive diversity. Mol. Ecol. Resour.19, 1497–1515 (2019).

    CAS 

    Google Scholar
     

  • Simma, S. et al. Diversité du génome entier et dynamique démographique de la race ovine D’man. African Mediterr. Agric. J.—Al Awamia 123–141. https://doi.org/10.34874/IMIST.PRSM/afrimed-i138.39134 (2023).

  • Chafai, N., Hayah, I., Houaga, I. & Badaoui, B. A review of machine learning models applied to genomic prediction in animal breeding. Front. Genet. 14, 1150596 (2023).


    Google Scholar
     

  • Ishengoma, E. Vertebrate genomics and adaptation—status and prospects in Africa. Mol. Ecol. 32, 3368–3381 (2023).


    Google Scholar
     

  • Liu, X. et al. Introgression and disruption of migration routes have shaped the genetic integrity of wildebeest populations. Nat. Commun. 15, 2921 (2024).

    CAS 

    Google Scholar
     

  • Talenti, A. et al. Continent-wide genomic analysis of the African buffalo (Syncerus caffer). Commun. Biol. 7, 792 (2024).

    CAS 

    Google Scholar
     

  • Rattray, R. D., Stewart, R. D., Niemann, H. J., Olaniyan, O. D. & van der Bank, M. Leafing through genetic barcodes: an assessment of 14 years of plant DNA barcoding in South Africa. S. Afr. J. Bot. 172, 474–487 (2024).

    CAS 

    Google Scholar
     

  • Stewart, R. D., Bard, N., Van Der Bank, M. & Davies, T. J. Leveraging Machine Learning and Citizen Science Data to Describe Flowering Phenology Across South Africa. https://doi.org/10.1101/2023.12.21.572952 (2023).

  • Volpato, A. et al. Using Malaise traps to assess aculeate Hymenoptera associated with farmland linear habitats across a range of farming intensities. Insect Conserv. Divers. 13, 229–238 (2020).


    Google Scholar
     

  • Folarin, O. A. et al. Ebola virus epidemiology and evolution in Nigeria. J. Infect .Dis. 214, S102–S109 (2016).


    Google Scholar
     

  • Wilkinson, E. et al. A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa. Science 374, 423–431 (2021).

    CAS 

    Google Scholar
     

  • Kotliar, D. et al. Genome-wide association study identifies human genetic variants associated with fatal outcome from Lassa fever. Nat. Microbiol 9, 751–762 (2024).

    CAS 

    Google Scholar
     

  • Hending, D. Cryptic species conservation: a review. Biol. Rev.100, 258–274 (2025).


    Google Scholar
     

  • Bertola, L. D. et al. Giraffe lineages are shaped by major ancient admixture events. Curr. Biol. 34, 1576–1586.e5 (2024).

    CAS 

    Google Scholar
     

  • Calcino, A. et al. Harnessing genomic technologies for one health solutions in the tropics. Global Health 20, 78 (2024).


    Google Scholar
     

  • Marshall, K. et al. Livestock genomics for developing countries—African examples in practice. Front. Genet. 10, 297 (2019).


    Google Scholar
     

  • Vilaça, S. T. et al. Leveraging genomes to support conservation and bioeconomy policies in a megadiverse country. Cell Genom. 4, 100678 (2024).


    Google Scholar
     

  • Mittermeier, R. A., Mittermeier, C. G. & Gil, P. R. Megadiversity: Earth’s Biologically Wealthiest Nations (CEMEX) https://books.google.co.ma/books?id=wvObQAAACAAJ (1997).

  • Humphrey, S. Africa Ecological Footprint Report: Green Infrastructure for Africa’s Security (WWF International and African Development Bank, 2012).

  • Karani, P., Failler, P., Gilau, A. M., Ndende, M. & Diop, S. T. Africa blue economy strategies integrated in planning to achieve sustainable development at National and Regional Economic Communities (RECs). J. Sustain. Res. https://doi.org/10.20900/jsr20220011 (2022).

  • South African National Biodiversity Institute (SANBI). National Biodiversity Assessment 2018: The Status of South Africa’s Ecosystems and Biodiversity. Synthesis Report (South African National Biodiversity Institute, Pretoria, 2018).

  • Nwosu, O. K. & Bello, S. Overview of the biosafety system in Nigeria. OBC-WPRS Bull. 163, 79–84 http://iobc-wprs.org/product/overview-of-the-biosafety-system-in-nigeria (2023).

  • UNEP Convention on Biological Diversity. in Conference of the Parties to the Adopted Decision 15/4, Kunming-Montreal Global Biodiversity Framework. Fifteenth Meeting—Part II, Montreal, Canada, 7–19 https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf (UNEP Convention on Biological Diversity, 2022).

  • International Union for Conservation of Nature. Kunming-Montreal Global Biodiversity Framework. Issues Brief (International Union for Conservation of Nature, 2024).

  • GBIF. Scoping Study Explores a Global Nature-related Public Data Facility (GBIF, 2023).

  • GBIF. Nigeria Rejoins GBIF as Voting Participant (GBIF, 2023).

  • Parker-Allie, F., Gibbons, M. J. & Harebottle, D. M. A conceptual approach to developing biodiversity informatics as a field of science in South Africa. Front. Ecol. Evol. 11, 1107212 (2023).


    Google Scholar
     

  • Rogalla Von Bieberstein, K. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).


    Google Scholar
     

  • Katee, S. M. et al. African Biodiversity Genomics in the Era of the Kunming-Montreal Global Biodiversity Framework: Ethical, Legal, and Social Perspectives https://doi.org/10.31219/OSF.IO/2XQ5E (2024).

  • Kurth, T., Wübbels, G., Portafaix, A., Meyer zum Felde, A. & Zielcke, S. The Biodiversity Crisis is a Business Crisis (Boston Consulting Group) https://web-assets.bcg.com/fb/5e/74af5531468e9c1d4dd5c9fc0bd7/bcg-the-biodiversity-crisis-is-a-business-crisis-mar-2021-rr.pdf (2021).

  • Poquérusse, J. et al. Assessing contemporary Arctic habitat availability for a woolly mammoth proxy. Sci. Rep. 14, 9804 (2024).


    Google Scholar
     

  • Seddon, P. J., Moehrenschlager, A. & Ewen, J. Reintroducing resurrected species: Selecting de-extinction candidates. Trends Ecol. Evol. 29, 140–147 (2014).


    Google Scholar
     

  • IPBES. Global Assessment Report on Biodiversity And Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Version 1). https://doi.org/10.5281/ZENODO.3831673 (IPBES, 2019).

  • Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    CAS 

    Google Scholar
     

  • Adaji, A. E. & Abdulrauf, L. A. Intellectual property issues for open science practices in genomic-related health research and innovation in Africa. J. Law Biosci. 11, lsae026 (2024).


    Google Scholar
     

  • Saeed, U. F., Kamil, R. & Wiredu, I. The roles of ICT and governance quality in the finance-growth nexus of developing countries: a dynamic GMM approach. Cogent Econ. Financ. 13, https://doi.org/10.1080/23322039.2024.2448228 (2025).

  • Bortesi, L. et al. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol. J. 14, 2203–2216 (2016).

    CAS 

    Google Scholar
     

  • El Allali, A. et al. Enabling Africa’s implementation of the Kunming-Montreal Global Biodiversity Framework through the African Digital Sequence Information Data Bank. https://doi.org/10.31219/osf.io/anbwv (2024).

  • Lahdachi, F. Z., Nassiri, L., Ibijbijen, J. & Mokhtari, F. Aperçu sur les acacias spontanés et introduits au Maroc. Eur. Sci. J. 11, 1857–7881 retrieved from https://eujournal.org/index.php/esj/article/view/6071 (2015).

  • Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).

    CAS 

    Google Scholar
     

  • R Core Team. R: A Language and Environment For Statistical Computing https://www.R-project.org/ (R Core Team, 2020).

  • Hu, Z. L., Park, C. A. & Reecy, J. M. Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res. 50, D956–D961 (2022).

    CAS 

    Google Scholar
     

  • Lipka, A. E. et al. GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397–2399 (2012).

    CAS 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 

    Google Scholar
     

  • Wang, Z. et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta 230, 1155–1166 (2009).

    CAS 

    Google Scholar
     

  • Lukowski, S. W. et al. Genetic correlations reveal the shared genetic architecture of transcription in human peripheral blood. Nat. Commun. 8, 483 (2017).


    Google Scholar
     

  • Volk, M. J. et al. Biosystems design by machine learning. ACS Synth. Biol. 9, 1514–1533 (2020).

    CAS 

    Google Scholar
     

  • Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    CAS 

    Google Scholar
     

  • African BioGenome Project (AfricaBP). Acknowledgements for the AfricaBP Open Institute Regional Workshops 2024. https://osf.io/t78xq 10.17605/OSF.IO/2BQ7C (African BioGenome Project (AfricaBP), 2025).

  • QGIS Development Team. QGIS Geographic Information System. Version 3.x (QGIS Development Team, 2024).

  • Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: Visualization of Intersecting Sets. IEEE Trans. Visual. Comput. Graph. 20, 1983–1992 (2014).


    Google Scholar
     

  • SAS Institute Inc. JMP®, Version 17.0 (SAS Institute Inc., Cary, NC, 1989–2023).

  • 1KSA. 1KSA Decoding South Africa’s Biodiversity|Genomics (1KSA, 2025).

  • Scarano, C., et al. Antibiotic resistance of Vibrio species isolated from Sparus aurata reared in Italian mariculture. New Microbiol. 37, 329–337 (2014).


    Google Scholar
     

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    CAS 

    Google Scholar
     

  • Kekre, M. & Pascoe, B. C-SOP-201: Genomic DNA Quantification Using a Qubit Fluorometer https://doi.org/10.17504/PROTOCOLS.IO.KQDG3XB47G25/V1 (2023).

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 

    Google Scholar
     

  • Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA117, 9451–9457 (2020).

    CAS 

    Google Scholar
     

  • Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker http://repeatmasker.org (2024).

  • Mokhtar, M. M., Alsamman, A. M. & El Allali, A. MegaSSR: a web server for large scale microsatellite identification, classification, and marker development. Front. Plant Sci. 14, 1219055 (2023).


    Google Scholar
     

  • Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20(1), 1–18 (2019).


    Google Scholar
     

  • Mokhtar, M. M. & El Allali, A. MegaLTR: a web server and standalone pipeline for detecting and annotating LTR-retrotransposons in plant genomes. Front. Plant Sci. 14, 1237426 (2023).


    Google Scholar
     

  • Mokhtar, M. M., Abd-Elhalim, H. M. & El Allali, A. A large-scale assessment of the quality of plant genome assemblies using the LTR assembly index. AoB Plants 15, plad015 (2023).


    Google Scholar
     

  • Bioinformatics Platform. UM6P https://bioinformatics.um6p.ma/platform (Bioinformatics Platform, 2024).

  • Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    CAS 

    Google Scholar
     

  • Angermueller, C., Pärnamaa, T., Parts, L. & Stegle, O. Deep learning for computational biology. Mol. Syst. Biol. 12, 878 (2016).


    Google Scholar
     

  • Liu, R., Mancuso, C. A., Yannakopoulos, A., Johnson, K. A. & Krishnan, A. Supervised learning is an accurate method for network-based gene classification. Bioinformatics 36, 3457–3465 (2020).

    CAS 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 

    Google Scholar
     

  • Liu, B. et al. Chromosome-level genome assembly of the endangered plant Tetraena mongolica. DNA Res. 30, dsad004 (2023).


    Google Scholar
     

  • Burgin, J. et al. The European Nucleotide Archive in 2022. Nucleic Acids Res. 51, D121–D125 (2023).

    CAS 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 

    Google Scholar
     

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS 

    Google Scholar
     

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS 

    Google Scholar
     

  • Goecks, J., Nekrutenko, A. & Taylor, J. & The Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).


    Google Scholar
     

  • Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    CAS 

    Google Scholar
     

  • Rozas, J. et al. DnaSP 6: dna sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    CAS 

    Google Scholar
     

  • Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).


    Google Scholar
     

  • Ogwang, J., Bariche, M. & Bos, A. R. Genetic diversity and phylogenetic relationships of threadfin breams (Nemipterus spp.) from the Red Sea and eastern Mediterranean Sea. Genome 64, 207–216 (2021).

    CAS 

    Google Scholar
     

  • Bos, A. R. et al. Anti-Lessepsian migration rectified: the Comber Serranus cabrilla (L. 1758) existed in the Red Sea prior to the Suez Canal opening. Mar. Biol. 167, 126 (2020).

    CAS 

    Google Scholar
     

  • Whitlock, M. C. & McCauley, D. E. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82, 117–125 (1999).


    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).


    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).


    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).


    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS 

    Google Scholar
     

  • Mughal, M. R. & DeGiorgio, M. Properties and unbiased estimation of F– and D-statistics in samples containing related and inbred individuals. Genetics 220, iyab090 (2022).


    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 

    Google Scholar
     

  • Garcia-Erill, G. & Albrechtsen, A. Evaluation of model fit of inferred admixture proportions. Mol. Eco. Resour. 20, 936–949 (2020).

    CAS 

    Google Scholar
     

  • Masoodi, K. Z., Lone, S. M. & Rasool, R. S. Genomic DNA extraction from the plant leaves using the CTAB method. In Advanced Methods in Molecular Biology and Biotechnology (eds. Masoodi, K. Z., Lone, S. M. & Rasool, R. S.) 37–44 https://doi.org/10.1016/B978-0-12-824449-4.00007-4 (Academic Press, 2021).

  • Yoshikawa, M. Exorphin-opioid active peptides of exogenous origin. In Handbook of Biologically Active Peptides (ed Kastin A. J.) 1365–1371 https://doi.org/10.1016/B978-012369442-3/50193-8 (Academic Press, 2006).

  • Makoni, M. South Africa launches a central biobank network. Nat Africa https://doi.org/10.1038/D44148-023-00078-3 (2023).

  • Manheim, B. S. Regulation of synthetic biology under the Nagoya Protocol. Nat Biotechnol 34, 1104–1105 (2016).

    CAS 

    Google Scholar
     

  • Convention on Biological Diversity. Cartagena Protocol on Biosafety to the Convention on Biological Diversity (2000) (Convention on Biological Diversity, 2025).

  • Wynberg, R. & Chennells, R. Green Diamonds of the South: an overview of the San-Hoodia Case. In Indigenous Peoples, Consent and Benefit Sharing (eds. Wynberg, R., Schroeder, D. & Chennells, R.) 89–124 (Springer Netherlands, Dordrecht, 2009).

  • Elguellab, A. & Ezzahid, E. Production Networks, Sectoral Shocks And Aggregate Volatility in a Developing Economy: Insights from Morocco https://www.policycenter.ma/sites/default/files/2023-11/RP_05-23%20%28Ali%20Elguellab%20%26%20Elhadj%20Ezzahid%29.pdf (2023).

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img