Utilizing aquatic environmental DNA to address global biodiversity targets


  • Keck, F. et al. The global human impact on biodiversity. Nature https://doi.org/10.1038/s41586-025-08752-2 (2025).

  • Pereira, H. M. et al. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Loreau, M. et al. Do not downplay biodiversity loss. Nature 601, E27–E28 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article 

    Google Scholar
     

  • World Economic Forum. Global Risks Report 2022, 17th edn (WEF, 2022).

  • United Nations Convention on Biological Diversity. Kunming–Montreal Global Biodiversity Framework. CBD https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf (UN, 2022).

  • Gonzalez, A. et al. A global biodiversity observing system to unite monitoring and guide action. Nat. Ecol. Evol. 7, 1947–1952 (2023).

    Article 

    Google Scholar
     

  • Almond, R. E., Grooten, M. & Peterson, T. World Wildlife Fund. Living Planet Report 2020 — Bending the Curve of Biodiversity Loss (WWF, 2020).

  • Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services. Global assessment report on biodiversity and ecosystem services (IPBES, 2019).

  • Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article 

    Google Scholar
     

  • Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Article 

    Google Scholar
     

  • Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pawlowski, J., Apothéloz-Perret-Gentil, L. & Altermatt, F. Environmental DNA: what’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol. 29, 4258–4264 (2020).

    Article 

    Google Scholar
     

  • Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. A spatial fingerprint of land–water linkage of biodiversity uncovered by remote sensing and environmental DNA. Sci. Total Environ. 867, 161365 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yates, M. C., Derry, A. M. & Cristescu, M. E. Environmental RNA: a revolution in ecological resolution? Trends Ecol. Evol. 36, 601–609 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Visco, J. A. et al. Environmental monitoring: inferring the diatom index from next-generation sequencing data. Environ. Sci. Technol. 49, 7597–7605 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kagzi, K., Hechler, R. M., Fussmann, G. F. & Cristescu, M. E. Environmental RNA degrades more rapidly than environmental DNA across a broad range of pH conditions. Mol. Ecol. Resour. 22, 2640–2650 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).

    Article 

    Google Scholar
     

  • Sepulveda, A. et al. Using structured decision making to evaluate potential management responses to detection of dreissenid mussel (Dreissena spp.) environmental DNA. Manag. Biol. Invasion 13, 344–368 (2022).

    Article 

    Google Scholar
     

  • US Fish and Wildlife Service. Great Lakes eDNA monitoring program. Asian carp Canada https://www.asiancarp.ca/surveillance-prevention-and-response/great-lakes-edna-monitoring-program/ (US FWS, 2020).

  • Romero, F., Acuña, V. & Sabater, S. Multiple stressors determine community structure and estimated function of river biofilm bacteria. Appl. Environ. Microbiol. 86, e00291–e00320 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Beermann, A. J., Zizka, V. M. A., Elbrecht, V., Baranov, V. & Leese, F. DNA metabarcoding reveals the complex and hidden responses of chironomids to multiple stressors. Environ. Sci. Eur. 30, 26 (2018).

    Article 

    Google Scholar
     

  • Fediajevaite, J., Priestley, V., Arnold, R. & Savolainen, V. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol. Evol. 11, 4803–4815 (2021).

    Article 

    Google Scholar
     

  • Buchner, D., Macher, T.-H., Beermann, A. J., Werner, M.-T. & Leese, F. Standardized high-throughput biomonitoring using DNA metabarcoding: strategies for the adoption of automated liquid handlers. Environ. Sci. Ecotechnol. 8, 100122 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).


    Google Scholar
     

  • Biggs, J. et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 183, 19–28 (2015).

    Article 

    Google Scholar
     

  • Larson, E. R. et al. From eDNA to citizen science: emerging tools for the early detection of invasive species. Front. Ecol. Environ. 18, 194–202 (2020).

    Article 

    Google Scholar
     

  • Couton, M. et al. Integrating citizen science and environmental DNA metabarcoding to study biodiversity of groundwater amphipods in Switzerland. Sci. Rep. 13, 18097 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    Article 

    Google Scholar
     

  • Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Mullis, K. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Higuchi, R., Fockler, C., Dollinger, G. & Watson, R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11, 1026–1030 (1993).

    CAS 

    Google Scholar
     

  • Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Bruce, K. et al. A Practical Guide to DNA-Based Methods for Biodiversity Assessment (Pensoft, 2021).

  • Sigsgaard, E. E. et al. Population-level inferences from environmental DNA — current status and future perspectives. Evol. Appl. 13, 245–262 (2020).

    Article 

    Google Scholar
     

  • Abad-Recio, I. L., Alonso-Sáez, L. & Lanzén, A. Toward functional profiling for eDNA‐based monitoring in coastal environments: a comparison of three approaches. Environ. DNA 6, e504 (2024).

    Article 

    Google Scholar
     

  • MacKenzie, M. & Argyropoulos, C. An introduction to nanopore sequencing: past, present, and future considerations. Micromachines 14, 459 (2023).

    Article 

    Google Scholar
     

  • Bovo, S. et al. Shotgun metagenomics of honey DNA: evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13, e0205575 (2018).

    Article 

    Google Scholar
     

  • Thomsen, P. F., Jensen, M. R. & Sigsgaard, E. E. A vision for global eDNA-based monitoring in a changing world. Cell 187, 4444–4448 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ogram, A., Sayler, G. S. & Barkay, T. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 7, 57–66 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Steffan, R. J., Goksøyr, J., Bej, A. K. & Atlas, R. M. Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54, 2908–2915 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).

    Article 

    Google Scholar
     

  • Blackman, R. et al. Environmental DNA: the next chapter. Mol. Ecol. 33, e17355 (2024).

    Article 

    Google Scholar
     

  • Satam, H. et al. Next-generation sequencing technology: current trends and advancements. Biology 2023, 997 (2023).

    Article 

    Google Scholar
     

  • Foote, A. D. et al. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE 7, e41781 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Leese, F. et al. DNAqua-Net: developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe. Res. Ideas Outcomes 2, e11321 (2016).

    Article 

    Google Scholar
     

  • Takahashi, M. et al. Aquatic environmental DNA: a review of the macro-organismal biomonitoring revolution. Sci. Total Environ. 873, 162322 (2023).

    Article 
    CAS 

    Google Scholar
     

  • De Brauwer, M. et al. Best practice guidelines for environmental DNA biomonitoring in Australia and New Zealand. Environ. DNA 5, 417–423 (2023).

    Article 

    Google Scholar
     

  • Ferrante, J. et al. Gaining decision-maker confidence through community consensus: developing environmental DNA standards for data display on the USGS Nonindigenous Aquatic Species database. Manag. Biol. Invasion 13, 809–832 (2022).

    Article 

    Google Scholar
     

  • Minamoto, T. et al. An illustrated manual for environmental DNA research: water sampling guidelines and experimental protocols. Environ. DNA 3, 8–13 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Andruszkiewicz Allan, E., Zhang, W. G., C. Lavery, A. & Govindarajan, F. A. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3, 492–514 (2021).

    Article 

    Google Scholar
     

  • Deiner, K. & Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9, e88786 (2014).

    Article 

    Google Scholar
     

  • Burian, A. et al. Improving the reliability of eDNA data interpretation. Mol. Ecol. Resour. 21, 1422–1433 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Keck, F., Couton, M. & Altermatt, F. Navigating the seven challenges of taxonomic reference databases in metabarcoding analyses. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13746 (2022).

    Article 

    Google Scholar
     

  • Goldberg, C. S., Strickler, K. M. & Pilliod, D. S. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biol. Conserv. 183, 1–3 (2015).

    Article 

    Google Scholar
     

  • Gonzalez, A. & Londoño, M. C. Monitor biodiversity for action. Science 378, 1147 (2022).

    Article 

    Google Scholar
     

  • Norros, V. et al. Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland — vision and action plan for 2022–2025 (Finnish Environment Institute, 2022).

  • Blancher, P. et al. A strategy for successful integration of DNA-based methods in aquatic monitoring. MBMG 6, e85652 (2022).

    Article 

    Google Scholar
     

  • Kelly, R. P. et al. Toward a national eDNA strategy for the United States. Environ. DNA https://doi.org/10.1002/edn3.432 (2024).

  • Mason, D. H. et al. Certain detection of uncertain taxa: eDNA detection of a cryptic mountain sucker (Pantosteus jordani) in the Upper Missouri River, USA. Environ. DNA 3, 449–457 (2021).

    Article 

    Google Scholar
     

  • Couton, M., Hürlemann, S., Studer, A., Alther, R. & Altermatt, F. Groundwater environmental DNA metabarcoding reveals hidden diversity and reflects land-use and geology. Mol. Ecol. 32, 3497–3512 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Laroche, O., Kersten, O., Smith, C. R. & Goetze, E. From sea surface to seafloor: a benthic allochthonous eDNA survey for the abyssal ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00682 (2020).

  • Lee, K. N., Kelly, R. P., Demir-Hilton, E., Laschever, E. & Allan, E. A. Adoption of environmental DNA in public agency practice. Environ. DNA https://doi.org/10.1002/edn3.470 (2024).

  • Sander, M. et al. Environmental DNA time series analysis of a temperate stream reveals distinct seasonal community and functional shifts. River Res. Appl. 40, 850–862 (2024).

    Article 

    Google Scholar
     

  • Tillotson, M. D. et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biol. Conserv. 220, 1–11 (2018).

    Article 

    Google Scholar
     

  • Formel, N., Enochs, I. C., Sinigalliano, C., Anderson, S. R. & Thompson, L. R. Subsurface automated samplers for eDNA (SASe) for biological monitoring and research. HardwareX 10, e00239 (2021).

    Article 

    Google Scholar
     

  • Hendricks, A. et al. A miniaturized and automated eDNA sampler: application to a marine environment. In OCEANS 2022, Hampton Roads https://doi.org/10.1109/oceans47191.2022.9977218 (IEEE, 2022).

  • Hendricks, A. et al. Compact and automated eDNA sampler for in situ monitoring of marine environments. Sci. Rep. 13, 5210 (2023).

    Article 
    CAS 

    Google Scholar
     

  • George, S. D. et al. Field trials of an autonomous eDNA sampler in lotic waters. Environ. Sci. Technol. 58, 20942–20953 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Preston, C. M. et al. Underwater application of quantitative PCR on an ocean mooring. PLoS ONE 6, e22522 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hansen, B. K. et al. Remote, autonomous real-time monitoring of environmental DNA from commercial fish. Sci. Rep. 10, 13272 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sepulveda, A. J. et al. Robotic environmental DNA bio-surveillance of freshwater health. Sci. Rep. 10, 14389 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Maiello, G. et al. Little samplers, big fleet: eDNA metabarcoding from commercial trawlers enhances ocean monitoring. Fish. Res. 249, 106259 (2022).

    Article 

    Google Scholar
     

  • Chen, X. et al. Comparative evaluation of common materials as passive samplers of environmental DNA. Environ. Sci. Technol. 56, 10798–10807 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pont, D. Predicting downstream transport distance of fish eDNA in lotic environments. Mol. Ecol. Resour. 24, e13934 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Van Driessche, C., Everts, T., Neyrinck, S. & Brys, R. Experimental assessment of downstream environmental DNA patterns under variable fish biomass and river discharge rates. Environ. DNA 5, 102–116 (2023).

    Article 

    Google Scholar
     

  • Brantschen, J. et al. Habitat suitability models reveal the spatial signal of environmental DNA in riverine networks. Ecography https://doi.org/10.1111/ecog.07267 (2024).

  • Cantera, I. et al. Low level of anthropization linked to harsh vertebrate biodiversity declines in Amazonia. Nat. Commun. 13, 3290 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zong, S. et al. Combining environmental DNA with remote sensing variables to map fish species distributions along a large river. Remote Sens. Ecol. Conserv. 10, 220–235 (2024).

    Article 

    Google Scholar
     

  • Jeunen, G.-J. et al. Water stratification in the marine biome restricts vertical environmental DNA (eDNA) signal dispersal. Environ. DNA 2, 99–111 (2020).

    Article 

    Google Scholar
     

  • Jeunen, G.-J. et al. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 19, 426–438 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Laporte, M. et al. Caged fish experiment and hydrodynamic bidimensional modeling highlight the importance to consider 2D dispersion in fluvial environmental DNA studies. Environ. DNA 2, 362–372 (2020).

    Article 

    Google Scholar
     

  • Sansom, B. J. & Sassoubre, L. M. Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river. Environ. Sci. Technol. 51, 14244–14253 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Andruszkiewicz, E. A. et al. Modeling environmental DNA transport in the coastal ocean using Lagrangian particle tracking. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00477 (2019).

  • Fukaya, K. et al. Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling. Mol. Ecol. 30, 3057–3067 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Carraro, L. & Altermatt, F. eDITH: an R‐package to spatially project eDNA‐based biodiversity across river networks with minimal prior information. Methods Ecol. Evol. 15, 806–815 (2024).

    Article 

    Google Scholar
     

  • Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585 (2020).

    Article 

    Google Scholar
     

  • Blackman, R. C., Carraro, L., Keck, F. & Altermatt, F. Measuring the state of aquatic environments using eDNA-upscaling spatial resolution of biotic indices. Philos. Trans. R. Soc. Lond. B 379, 20230121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jerde, C. L. et al. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can. J. Fish. Aquat. Sci. 70, 522–526 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rees, H. C. et al. The application of eDNA for monitoring of the great crested newt in the UK. Ecol. Evol. 4, 4023–4032 (2014).

    Article 

    Google Scholar
     

  • Jahn, K. et al. Early detection and surveillance of SARS-CoV-2 genomic variants in wastewater using COJAC. Nat. Microbiol. 7, 1151–1160 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Feist, S. M. & Lance, R. F. Genetic detection of freshwater harmful algal blooms: a review focused on the use of environmental DNA (eDNA) in Microcystis aeruginosa and Prymnesium parvum. Harmful Algae 110, 102124 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Abdul Manaff, A. H. N. et al. Mapping harmful microalgal species by eDNA monitoring: a large-scale survey across the southwestern South China Sea. Harmful Algae 129, 102515 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Blackman, R. C. et al. Targeted and passive environmental DNA approaches outperform established methods for detection of quagga mussels, Dreissena rostriformis bugensis in flowing water. Ecol. Evol. 10, 13248–13259 (2020).

    Article 

    Google Scholar
     

  • Danziger, A. M. & Frederich, M. Challenges in eDNA detection of the invasive European green crab, Carcinus maenas. Biol. Invasions 24, 1881–1894 (2022).

    Article 

    Google Scholar
     

  • Mansfeldt, C. et al. Microbial community shifts in streams receiving treated wastewater effluent. Sci. Total Environ. 709, 135727 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Inoue, Y., Miyata, K., Yamane, M. & Honda, H. Environmental nucleic acid pollution: characterization of wastewater generating false positives in molecular ecological surveys. ACS ES&T Water 3, 756–764 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Darling, J. A., Jerde, C. L. & Sepulveda, A. J. What do you mean by false positive. Environ. DNA 3, 879–883 (2020).

    Article 

    Google Scholar
     

  • Ficetola, G. F., Taberlet, P. & Coissac, E. How to limit false positives in environmental DNA and metabarcoding? Mol. Ecol. Resour. 16, 604–607 (2016).

    Article 
    CAS 

    Google Scholar
     

  • McCauley, M., Koda, S. A., Loesgen, S. & Duffy, D. J. Multicellular species environmental DNA (eDNA) research constrained by overfocus on mitochondrial DNA. Sci. Total Environ. 912, 169550 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70, 1123–1130 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Di Muri, C. et al. Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds. MBMG 4, e56959 (2020).

    Article 

    Google Scholar
     

  • Pont, D. et al. Quantitative monitoring of diverse fish communities on a large scale combining eDNA metabarcoding and qPCR. Mol. Ecol. Resour. 23, 396–409 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Nakagawa, H., Fukushima, K., Sakai, M., Wu, L. & Minamoto, T. Relationships between the eDNA concentration obtained from metabarcoding and stream fish abundance estimated by the removal method under field conditions. Environ. DNA 4, 1369–1380 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fonseca, V. G. Pitfalls in relative abundance estimation using eDNA metabarcoding. Mol. Ecol. Resour. 18, 923–926 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yates, M. C., Fraser, D. J. & Derry, A. M. Meta‐analysis supports further refinement of eDNA for monitoring aquatic species‐specific abundance in nature. Environ. DNA 1, 5–13 (2019).

    Article 

    Google Scholar
     

  • Sepulveda, A. J. et al. It’s complicated environmental DNA as a predictor of trout and char abundance in streams. Can. J. Fish. Aquat. Sci. 78, 422–432 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sigsgaard, E. E. et al. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat. Ecol. Evol. 1, 0004 (2016).

    Article 

    Google Scholar
     

  • Weitemier, K. et al. Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding. Mol. Ecol. 30, 4970–4990 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Parsons, K. M., Everett, M., Dahlheim, M. & Park, L. Water, water everywhere: environmental DNA can unlock population structure in elusive marine species. R. Soc. Open Sci. 5, 180537 (2018).

    Article 

    Google Scholar
     

  • Elbrecht, V., Vamos, E. E., Steinke, D. & Leese, F. Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ 6, e4644 (2018).

    Article 

    Google Scholar
     

  • Turon, X., Antich, A., Palacín, C., Praebel, K. & Wangensteen, O. S. From metabarcoding to metaphylogeography: separating the wheat from the chaff. Ecol. Appl. 30, e02036 (2020).

    Article 

    Google Scholar
     

  • Couton, M., Viard, F. & Altermatt, F. Opportunities and inherent limits of using environmental DNA for population genetics. Environ. DNA 5, 1048–1064 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Andres, K. J., Sethi, S. A., Lodge, D. M. & Andrés, J. Nuclear eDNA estimates population allele frequencies and abundance in experimental mesocosms and field samples. Mol. Ecol. 30, 685–697 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wolf, K. K. E. et al. Revealing environmentally driven population dynamics of an Arctic diatom using a novel microsatellite PoolSeq barcoding approach. Environ. Microbiol. 23, 3809–3824 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barbour, M. T., Gerritsen, J., Snyder, B. D. & Stribling, J. B. US Environmental Protection Agency. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers (US EPA, 1999).

  • Cordier, T. et al. Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap. Mol. Ecol. 30, 2937–2958 (2021).

    Article 

    Google Scholar
     

  • Yang, J. et al. Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen. Environ. Sci. Technol. 51, 3057–3064 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nuy, J. K. et al. Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study. Sci. Total Environ. 633, 1287–1301 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, F. et al. Application of environmental DNA metabarcoding for predicting anthropogenic pollution in rivers. Environ. Sci. Technol. 52, 11708–11719 (2018).

    CAS 

    Google Scholar
     

  • Blackman, R. C., Ho, H.-C., Walser, J.-C. & Altermatt, F. Spatio-temporal patterns of multi-trophic biodiversity and food-web characteristics uncovered across a river catchment using environmental DNA. Commun. Biol. 5, 259 (2022).

    Article 

    Google Scholar
     

  • Stevens, J. D. & Parsley, M. B. Environmental RNA applications and their associated gene targets for management and conservation. Environ. DNA 5, 227–239 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bergsveinson, J. et al. Metatranscriptomic insights into the response of river biofilm communities to ionic and nano-zinc oxide exposures. Front. Microbiol. 11, 267 (2020).

    Article 

    Google Scholar
     

  • Hechler, R. M., Yates, M. C., Chain, F. J. J. & Cristescu, M. E. Environmental transcriptomics under heat stress: can environmental RNA reveal changes in gene expression of aquatic organisms? Mol. Ecol. https://doi.org/10.1111/mec.17152 (2023).

  • Cordier, T. et al. Predicting the ecological quality status of marine environments from eDNA metabarcoding data using supervised machine learning. Environ. Sci. Technol. 51, 9118–9126 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Keck, F., Brantschen, J. & Altermatt, F. A combination of machine-learning and eDNA reveals the genetic signature of environmental change at the landscape levels. Mol. Ecol. 32, 4791–4800 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Salis, R. K., Bruder, A., Piggott, J. J., Summerfield, T. C. & Matthaei, C. D. High-throughput amplicon sequencing and stream benthic bacteria: identifying the best taxonomic level for multiple-stressor research. Sci. Rep. 7, 44657 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sagova-Mareckova, M. et al. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res. 191, 116767 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cordier, T., Lanzén, A., Apothéloz-Perret-Gentil, L., Stoeck, T. & Pawlowski, J. Embracing environmental genomics and machine learning for routine biomonitoring. Trends Microbiol. 27, 387–397 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Martínez-Santos, M. et al. Treated and untreated wastewater effluents alter river sediment bacterial communities involved in nitrogen and sulphur cycling. Sci. Total Environ. 633, 1051–1061 (2018).

    Article 

    Google Scholar
     

  • Andújar, C. et al. Metabarcoding of freshwater invertebrates to detect the effects of a pesticide spill. Mol. Ecol. 27, 146–166 (2018).

    Article 

    Google Scholar
     

  • Vasselon, V., Rimet, F., Tapolczai, K. & Bouchez, A. Assessing ecological status with diatoms DNA metabarcoding: scaling-up on a WFD monitoring network (Mayotte island, France). Ecol. Indic. 82, 1–12 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Apothéloz-Perret-Gentil, L. et al. Taxonomy-free molecular diatom index for high-throughput eDNA biomonitoring. Mol. Ecol. Resour. 17, 1231–1242 (2017).

    Article 

    Google Scholar
     

  • Feio, M. J. et al. A taxonomy-free approach based on machine learning to assess the quality of rivers with diatoms. Sci. Total Environ. 722, 137900 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Frühe, L. et al. Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes. Mol. Ecol. 30, 2988–3006 (2021).

    Article 

    Google Scholar
     

  • Cordier, T. et al. Supervised machine learning outperforms taxonomy-based environmental DNA metabarcoding applied to biomonitoring. Mol. Ecol. Resour. 18, 1381–1391 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wilkinson, S. P. et al. TICI: a taxon-independent community index for eDNA-based ecological health assessment. PeerJ 12, e16963 (2024).

    Article 

    Google Scholar
     

  • Zhang, Y., Zhang, X., Li, F. & Altermatt, F. Fishing eDNA in one of the world’s largest rivers: a case study of cross-sectional and depth profile sampling in the Yangtze. Environ. Sci. Technol. 57, 21691–21703 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gold, Z., Sprague, J., Kushner, D. J., Zerecero Marin, E. & Barber, P. H. eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS ONE 16, e0238557 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stewart, K., Ma, H., Zheng, J. & Zhao, J. Using environmental DNA to assess population-wide spatiotemporal reserve use. Conserv. Biol. 31, 1173–1182 (2017).

    Article 

    Google Scholar
     

  • McClenaghan, B. et al. Harnessing the power of eDNA metabarcoding for the detection of deep-sea fishes. PLoS ONE 15, e0236540 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fujiwara, Y. et al. Detection of the largest deep-sea-endemic teleost fish at depths of over 2,000 m through a combination of eDNA metabarcoding and baited camera observations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.945758 (2022).

  • van der Heyde, M. et al. Taking eDNA underground: factors affecting eDNA detection of subterranean fauna in groundwater. Mol. Ecol. Resour. 23, 1257–1274 (2023).

    Article 

    Google Scholar
     

  • Savio, D. et al. Bacterial diversity along a 2600 km river continuum. Environ. Microbiol. 17, 4994–5007 (2015).

    Article 
    CAS 

    Google Scholar
     

  • De Ventura, L., Kopp, K., Seppälä, K. & Jokela, J. Tracing the quagga mussel invasion along the Rhine River system using eDNA markers: early detection and surveillance of invasive zebra and quagga mussels. MBio 8, 101–112 (2017).

    Article 

    Google Scholar
     

  • Adams, A. J. et al. From eDNA to decisions using a multi-method approach to restoration planning in streams. Sci. Rep. 14, 14335 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mahon, A. R. et al. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS ONE 8, e58316 (2013).

    Article 
    CAS 

    Google Scholar
     

  • US Fish and Wildlife Service. Quality assurance project plan eDNA monitoring of bighead and silver carps. USFWS Great Lakes region 3 (US FWS, 2022).

  • Ellis, M. R. et al. Detecting marine pests using environmental DNA and biophysical models. Sci. Total Environ. 816, 151666 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Matejusova, I. et al. Environmental DNA based surveillance for the highly invasive carpet sea squirt Didemnum vexillum: a targeted single-species approach. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.728456 (2021).

  • Sepulveda, A. J. et al. When are environmental DNA early detections of invasive species actionable? J. Environ. Manage. 343, 118216 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, F. et al. Human activities’ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Chang. Biol. 26, 6867–6879 (2020).

    Article 

    Google Scholar
     

  • Lanzén, A., Dahlgren, T. G., Bagi, A. & Hestetun, J. T. Benthic eDNA metabarcoding provides accurate assessments of impact from oil extraction, and ecological insights. Ecol. Indic. 130, 108064 (2021).

    Article 

    Google Scholar
     

  • Suzzi, A. L. et al. eDNA metabarcoding reveals shifts in sediment eukaryote communities in a metal contaminated estuary. Mar. Pollut. Bull. 191, 114896 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Stoeck, T. et al. Environmental DNA metabarcoding of benthic bacterial communities indicates the benthic footprint of salmon aquaculture. Mar. Pollut. Bull. 127, 139–149 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Keck, F. et al. Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Mol. Ecol. 31, 1820–1835 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Leese, F. et al. Why we need sustainable networks bridging countries, disciplines, cultures and generations for aquatic biomonitoring 2.0: a perspective derived from the DNAqua-net COST action. Adv. Ecol. Res. 58, 63–99 (2018).

    Article 

    Google Scholar
     

  • Pont, D. et al. The future of fish-based ecological assessment of European rivers: from traditional EU Water Framework Directive compliant methods to eDNA metabarcoding-based approaches. J. Fish Biol. 98, 354–366 (2021).

    Article 

    Google Scholar
     

  • Pawlowski, J., Bonin, A., Boyer, F., Cordier, T. & Taberlet, P. Environmental DNA for biomonitoring. Mol. Ecol. 30, 2931–2936 (2021).

    Article 

    Google Scholar
     

  • Meyer, A. et al. Morphological vs. DNA metabarcoding approaches for the evaluation of stream ecological status with benthic invertebrates: testing different combinations of markers and strategies of data filtering. Mol. Ecol. 30, 3203–3220 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Blackman, R. C. et al. Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring — the need for calibration experiments. MBMG 3, e34735 (2019).

    Article 

    Google Scholar
     

  • Pawlowski, J., Apothéloz-Perret-Gentil, L., Mächler, E. & Altermatt, F. Environmental DNA Applications for Biomonitoring and Bioassessment in Aquatic Ecosystems. Guidelines. Environmental Studies no. 2010: 71 (Federal Office for the Environment, 2020).

  • Laamanen, T. et al. Technology readiness level of biodiversity monitoring with molecular methods – where are we on the road to routine implementation? Metabarcoding Metagenom. 9, e130834 (2025).

    Article 

    Google Scholar
     

  • Yang, J., Zhang, L., Mu, Y. & Zhang, X. Small changes make big progress: a more efficient eDNA monitoring method for freshwater fish. Environ. DNA 5, 363–374 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shea, M. M. et al. Systematic review of marine environmental DNA metabarcoding studies: toward best practices for data usability and accessibility. PeerJ 11, e14993 (2023).

    Article 

    Google Scholar
     

  • Li, J., Lawson Handley, L.-J., Read, D. S. & Hänfling, B. The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding. Mol. Ecol. Resour. 18, 1102–1114 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Deiner, K. et al. Optimising the detection of marine taxonomic richness using environmental DNA metabarcoding: the effects of filter material, pore size and extraction method. MBMG 2, e28963 (2018).

    Article 

    Google Scholar
     

  • Loeza-Quintana, T., Abbott, C. L., Heath, D. D., Bernatchez, L. & Hanner, R. H. Pathway to increase standards and competency of eDNA surveys (PISCeS)— advancing collaboration and standardization efforts in the field of eDNA. Environ. DNA 2, 255–260 (2020).

    Article 

    Google Scholar
     

  • Altermatt, F. et al. Quantifying biodiversity using eDNA from water bodies: general principles and recommendations for sampling designs. Environ. DNA 5, 671–682 (2023).

    Article 
    CAS 

    Google Scholar
     

  • ISO/DIS 17805:2023. Water Quality — Sampling, Capture and Preservation of Environmental DNA from Water (ISO, 2023).

  • Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work. Sci. Total Environ. 678, 499–524 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, F. et al. Gap analysis for DNA-based biomonitoring of aquatic ecosystems in China. Ecol. Indic. 137, 108732 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Briski, E., Ghabooli, S., Bailey, S. A. & MacIsaac, H. J. Are genetic databases sufficiently populated to detect non-indigenous species? Biol. Invasions 18, 1911–1922 (2016).

    Article 

    Google Scholar
     

  • Mc Cartney, A. M. et al. The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics. npj Biodivers. 3, 28 (2024).

    Article 

    Google Scholar
     

  • Hebert, P. D. N., Floyd, R., Jafarpour, S. & Prosser, S. W. J. Barcode 100K specimens: in a single nanopore run. Mol. Ecol. Resour. 25, e14028 (2025).

    Article 

    Google Scholar
     

  • Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience 7, giy033 (2018).

    Article 

    Google Scholar
     

  • Lin, D. et al. The TRUST principles for digital repositories. Sci. Data 7, 144 (2020).

    Article 

    Google Scholar
     

  • Leigh, D. M. et al. Best practices for genetic and genomic data archiving. Nat. Ecol. Evol. 8, 1224–1232 (2024).

    Article 

    Google Scholar
     

  • Nilsson, R. H. et al. Introducing guidelines for publishing DNA-derived occurrence data through biodiversity data platforms. MBMG 6, e84960 (2022).

    Article 

    Google Scholar
     

  • Berry, O. et al. Making environmental DNA (eDNA) biodiversity records globally accessible. Environ. DNA 3, 699–705 (2021).

    Article 

    Google Scholar
     

  • Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Meyer, R. et al. Aligning standards communities for omics biodiversity data: sustainable Darwin Core–MIxS interoperability. Biodivers. Data J. 11, e112420 (2023).

    Article 

    Google Scholar
     

  • Abarenkov, K. et al. Publishing DNA-derived data through biodiversity data platforms v1.3 (GBIF Secretariat, 2023).

  • Klymus, K. E. et al. The MIEM guidelines: minimum information for reporting of environmental metabarcoding data. MBMG https://doi.org/10.3897/mbmg.8.128689 (2024).

  • Takahashi, M. et al. Best practice for publishing environmental DNA (eDNA) data according to FAIR principles. Biodivers. Inf. Sci. Stand. https://doi.org/10.3897/biss.8.137742 (2024).

  • Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article 

    Google Scholar
     

  • Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).

    Article 

    Google Scholar
     

  • Shen, E. W., Vandenberg, J. M. & Moore, A. Sensing inequity: technological solutionism, biodiversity conservation, and environmental DNA. Biosocieties 19, 501–525 (2024).

    Article 

    Google Scholar
     

  • Carroll, S. R. et al. The CARE principles for indigenous data governance. Data Sci. J. 19, 43 (2020).

    Article 

    Google Scholar
     

  • Secretariat of the Convention on Biological Diversity. Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity (Convention on Biological Diversity, United Nations, 2011).

  • Stammnitz, M. R., Hartman Scholz, A. & Duffy, D. J. Environmental DNA without borders: let’s embrace decentralised genomics to meet the UN’s biodiversity targets. EMBO Rep. 25, 4095–4099 (2024).

    Article 

    Google Scholar
     

  • Handsley-Davis, M., Kowal, E., Russell, L. & Weyrich, L. S. Researchers using environmental DNA must engage ethically with Indigenous communities. Nat. Ecol. Evol. 5, 146–148 (2021).

    Article 

    Google Scholar
     

  • Wauchope, H. S. et al. What is a unit of nature? Measurement challenges in the emerging biodiversity credit market. Proc. Biol. Sci. 291, 20242353 (2024).


    Google Scholar
     

  • Bhutta, U. S., Tariq, A., Farrukh, M., Raza, A. & Iqbal, M. K. Green bonds for sustainable development: review of literature on development and impact of green bonds. Technol. Forecast. Soc. Change 175, 121378 (2022).

    Article 

    Google Scholar
     

  • Watt, R. The fantasy of carbon offsetting. Environ. Politics 30, 1069–1088 (2021).

    Article 

    Google Scholar
     

  • Ford, H. V. et al. A technological biodiversity monitoring toolkit for biocredits. J. Appl. Ecol. 61, 2007–2019 (2024).

    Article 

    Google Scholar
     

  • Jarman, S. N., Berry, O. & Bunce, M. The value of environmental DNA biobanking for long-term biomonitoring. Nat. Ecol. Evol. 2, 1192–1193 (2018).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    For many island species, the next tropical cyclone may be their...

    When a major cyclone tears through an island nation, all efforts rightly focus on saving human lives and restoring...
    Biodiversity
    3
    minutes

    Mapping benthic habitats in Bohai Bay, China

    Habitat classification schemeDeveloping a benthic habitat classification scheme is a fundamental step in benthic habitat mapping, providing a structured framework for organizing and...
    Biodiversity
    8
    minutes

    Effect of climate on traits of dominant and rare tree species...

    Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, SwitzerlandIris Hordijk, Chelsea Chisholm, Daniel S. Maynard & Thomas W. CrowtherWageningen University and Research, Wageningen,...
    Biodiversity
    15
    minutes

    CheloniansTraits: a comprehensive trait database of global turtles and tortoises

    Lyson, T. R. et al. Fossorial origin of the turtle shell. Current Biology 26, 1887–1894 (2016).CAS  PubMed  ...
    Biodiversity
    6
    minutes
    spot_imgspot_img