Samal, P., Srivastava, J., Charles, B. & Singarasubramanian, S. R. Species distribution models to predict the potential niche shift and priority conservation areas for mangroves (Rhizophora apiculata R. mucronata) in response to climate and sea level fluctuations along coastal India. Ecol. Ind. 154, 110631. https://doi.org/10.1016/j.ecolind.2023.110631 (2023).
Morris, J. T. et al. Mangrove trees outperform saltmarsh grasses in building elevation but collapse rapidly under high rates of sea-level rise. Earth’s Future https://doi.org/10.1029/2022ef003202 (2023).
Song, S. et al. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change. Nat. Commun. 14, 756. https://doi.org/10.1038/s41467-023-36477-1 (2023).
Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).
Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234. https://doi.org/10.1038/s41586-018-0476-5 (2018).
Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559. https://doi.org/10.1038/nature15538 (2015).
Wang, Y., Chao, B., Dong, P., Zhang, D. & Chen, B. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 788, 147914. https://doi.org/10.1016/j.scitotenv.2021.147914 (2021).
Hu, W. et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 748, 142321. https://doi.org/10.1016/j.scitotenv.2020.142321 (2020).
An, S., Gu, B., Zhou, C., Wang, Z. & Liu, Y. Spartina invasion in China implications for invasive species management and future research. Weed Res. 47, 183–191. https://doi.org/10.1111/j.1365-3180.2007.00559.x (2007).
Xu, X., Wei, S., Chen, H., Li, B. & Nie, M. Effects of Spartina invasion on the soil organic carbon content in salt marsh and mangrove ecosystems in China. J. Appl. Ecol. 59, 1937–1946. https://doi.org/10.1111/1365-2664.14202 (2022).
Zhang, D. H., Hu, Y. M. & Liu, M. Potential distribution of Spartinal alterniflora in China coastal areas based on Maxent niche model. Ying Yong Sheng Tai Xue Bao 30, 2329–2337. https://doi.org/10.13287/j.1001-9332.201907.014 (2019).
Sun, H. et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 673, 502–510. https://doi.org/10.1016/j.scitotenv.2019.04.122 (2019).
Zheng, X. et al. Impact of Spartina alterniflora invasion in coastal wetlands of China: Boon or bane?. Biology (Basel) 12, 1057. https://doi.org/10.3390/biology12081057 (2023).
Hutchinson, G. E., Hutchinson, G., Hutchinson, G. & Hutchinson, G. Concluding remarks, coldspring harbor symposium. Quant. Biol. 22, 239 (1957).
Pastore, A. I., Barabas, G., Bimler, M. D., Mayfield, M. M. & Miller, T. E. The evolution of niche overlap and competitive differences. Nat. Ecol. Evol. 5, 330–337. https://doi.org/10.1038/s41559-020-01383-y (2021).
Xia, S. et al. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Glob. Change Biol. 27, 1627–1644. https://doi.org/10.1111/gcb.15516 (2021).
Wei, Y. et al. Mangrove-saltmarsh ecotones: Are species shifts determining eco-morphodynamic landform configurations?. Earth’s Future https://doi.org/10.1029/2024ef004990 (2024).
Ndayambaje, P. et al. Niche separation and weak interactions in the high tidal zone of saltmarsh-mangrove mixing communities. Ecol. Evol. 11, 3871–3883. https://doi.org/10.1002/ece3.7263 (2021).
Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 111, 723–727. https://doi.org/10.1073/pnas.1315800111 (2014).
Wani, I. A. et al. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Sci. Rep. 12, 13205. https://doi.org/10.1038/s41598-022-16837-5 (2022).
Zhang, D. H., Hu, Y. M. & Liu, M. Potential distribution of Spartinal alterniflora in China coastal areas based on Maxent niche model. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 30, 2329–2337. https://doi.org/10.13287/j.1001-9332.201907.014 (2019).
Cui, L. et al. Global potential distribution of mangroves: Taking into account salt marsh interactions along latitudinal gradients. J. Environ. Manag. 351, 119892. https://doi.org/10.1016/j.jenvman.2023.119892 (2024).
Karla, R. M., Carlos, Y. A., Townsend, P., Jorge, E. A. & Jorge, H.-S. Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE 15, e0237701. https://doi.org/10.1371/journal.pone.0237701 (2020).
Zheng, J. et al. Invasive trends of Spartina alterniflora in the southeastern coast of china and potential distributional impacts on mangrove forests. Plants 12, 1923. https://doi.org/10.3390/plants12101923 (2023).
Song, Y. et al. Ensemble species distribution modeling and multilocus phylogeography provide insight into the spatial genetic patterns and distribution dynamics of a keystone forest species, Quercus glauca. BMC Plant Biol. 24, 168. https://doi.org/10.1186/s12870-024-04830-1 (2024).
Cui, L. et al. Conservation and restoration of mangroves in response to invasion of Spartina alterniflora based on the MaxEnt model: A case study in China. Forests 14, 1220. https://doi.org/10.3390/f14061220 (2023).
Schmitt, S. et al. ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 8, 1795–1803. https://doi.org/10.1111/2041-210x.12841 (2017).
McCullagh, P. & Nelder, J. A. Generalized Linear Models (Routledge, London, 1989).
Hastie, T. & Tibshirani, R. Generalized additive mdels. Stat. Sci. 1, 297–318 (1986).
Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67. https://doi.org/10.1214/aos/1176347963 (1991).
Ridgeway, G. Generalized boosted models: A guide to the gbm package R (2020).
Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and Regression Trees. (Routledge, London, 1984).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).
Gupta, N. Artificial neural network. Netw. Complex Syst. 3, 24–28 (2013).
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28. https://doi.org/10.1109/5254.708428 (1998).
Morgane, B. M., Frédéric, J., Cécile, H. A. & Wilfried, T. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).
Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x (2005).
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).
Yang, R., Cao, R., Gong, X. & Feng, J. Large shifts of niche and range in the golden apple snail (Pomacea canaliculata), an aquatic invasive species. Ecosphere 14, e4391. https://doi.org/10.1002/ecs2.4391 (2023).
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x (2012).
Meng, W., Feagin, R. A., Hu, B., He, M. & Li, H. The spatial distribution of blue carbon in the coastal wetlands of China. Estuar. Coast. Shelf Sci. 222, 13–20. https://doi.org/10.1016/j.ecss.2019.03.010 (2019).
Yang, S., Lu, W. & Zou, Z. Mangrove wetlands: Distribution, species composition and protection in China. Subtrop. Plant Sci. 46, 301–310. https://doi.org/10.3969/j.issn.1009-7791.2017.04.001 (2017).
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105, 6668–6672. https://doi.org/10.1073/pnas.0709472105 (2008).
Liao, B. & Zhang, Q. Area, distributionand species composition of mangroves in China. Wetland Sci. 12, 435. https://doi.org/10.13248/j.cnki.wetlandsci.2014.04.005 (2014).
Xie, X. F. et al. Impacts of Spartina alterniflora invasion on coastal wetland ecosystem: Advances and prospects. Ying Yong Sheng Tai Xue Bao 31, 2119–2128. https://doi.org/10.13287/j.1001-9332.202006.032 (2020).
Zhao, H. et al. Nitrogen-enriched eutrophication promotes the invasion of Spartina alterniflora in coastal China. Clean: Soil, Air, Water 43, 244–250. https://doi.org/10.1002/clen.201300844 (2014).
Mckee, K., Rogers, K. & Saintilan, N. Response of Salt Marsh and Mangrove Wetlands to Changes in Atmospheric CO2, Climate, and Sea Level (Springer, Cham, 2012).
Araujo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol Evol 22, 42–47. https://doi.org/10.1016/j.tree.2006.09.010 (2007).
Lyons, D. A. et al. Identifying marine invasion hotspots using stacked species distribution models. Biol. Invasions 22, 3403–3423. https://doi.org/10.1007/s10530-020-02332-3 (2020).
Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549–558. https://doi.org/10.1111/ecog.04890 (2020).
Crimmins, S. M., Dobrowski, S. Z. & Mynsberge, A. R. Evaluating ensemble forecasts of plant species distributions under climate change. Ecol. Model. 266, 126–130. https://doi.org/10.1016/j.ecolmodel.2013.07.006 (2013).
Kaky, E., Nolan, V., Alatawi, A. & Gilbert, F. A comparison between ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 60, 101150. https://doi.org/10.1016/j.ecoinf.2020.101150 (2020).
Zahoor, B., Liu, X., Ahmad, B., Kumar, L. & Songer, M. Impact of climate change on Asiatic black bear (Ursus thibetanus) and its autumn diet in the northern highlands of Pakistan. Glob. Chang Biol. 27, 4294–4306. https://doi.org/10.1111/gcb.15743 (2021).
Anibaba, Q. A., Dyderski, M. K. & Jagodzinski, A. M. Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe. Sci. Total Environ. 825, 154053. https://doi.org/10.1016/j.scitotenv.2022.154053 (2022).
Veldkornet, D. A. & Rajkaran, A. Predicting shifts in the geographical distribution of two estuarine plant species from the subtropical and temperate regions of South Africa. Wetlands 39, 1179–1188. https://doi.org/10.1007/s13157-019-01218-y (2019).
Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 10, 435–435. https://doi.org/10.1111/j.1461-0248.2007.01044.x (2005).