COP15: final text of Kunming–Montréal Global Biodiversity Framework. Convention on Biological Diversity https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222 (2022).
Caldwell, I. R. et al. Global trends and biases in biodiversity conservation research. Cell Rep. Sustain. 1, 100082 (2024).
García-Roselló, E., González-Dacosta, J. & Lobo, J. M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 283, 110118 (2023).
Daru, B. H. & Rodriguez, J. Mass production of unvouchered records fails to represent global biodiversity patterns. Nat. Ecol. Evol. 7, 816–831 (2023).
Daru, B. H. et al. Widespread sampling biases in herbaria revealed from large-scale digitization. N. Phytol. 217, 939–955 (2018).
Raven, P. H. & Wilson, E. O. A fifty-year plan for biodiversity surveys. Science 258, 1099–1100 (1992).
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
Berger-Tal, O. & Lahoz-Monfort, J. J. Conservation technology: the next generation. Conserv. Lett. 11, e12458 (2018).
Tuia, D. et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 13, 792 (2022).
Barta, Z. Deep learning in terrestrial conservation biology. Biol. Futura 74, 359–367 (2023).
Stowell, D. Computational bioacoustics with deep learning: a review and roadmap. PeerJ 10, e13152 (2022).
Weinstein, B. G. A computer vision for animal ecology. J. Anim. Ecol. 87, 533–545 (2018).
Schneider, S., Taylor, G. W., Linquist, S. & Kremer, S. C. Past, present and future approaches using computer vision for animal re-identification from camera trap data. Meth. Ecol. Evol. 10, 461–470 (2019).
Tuia, D. et al. Toward a collective agenda on AI for Earth science data analysis. IEEE Geosci. Remote. Sens. Mag. 9, 88–104 (2021).
Biodiversity and Artificial Intelligence: Opportunities & Recommendations for Action. The Global Partnership on AI https://gpai.ai/projects/responsible-ai/environment/biodiversity-and-AI-opportunities-recommendations-for-action.pdf (2022).
Pichler, M. & Hartig, F. Machine learning and deep learning—a review for ecologists. Meth. Ecol. Evol. 14, 994–1016 (2023).
Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).
Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, 6723 (2024).
Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Meth. 21, 1481–1491 (2024).
Rosen, Y. et al. Universal cell embeddings: a foundation model for cell biology. Preprint at bioRxiv https://doi.org/10.1101/2023.11.28.568918 (2023).
Stevens, S. et al. BioCLIP: a vision foundation model for the tree of life. In 2024 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) 19412–19424 (IEEE, 2024).
Bánki, O. Catalogue of Life Annual Release 2024. Catalogue of Life https://www.catalogueoflife.org/2024/06/27/release (2024).
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).
Caley, M. J., Fisher, R. & Mengersen, K. Global species richness estimates have not converged. Trends Ecol. Evol. 29, 187–188 (2014).
Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).
Winter, M. et al. Patterns and biases in climate change research on amphibians and reptiles: a systematic review. R. Soc. Open Sci. 3, 160158 (2016).
Diniz-Filho, J. A. F., De Marco, P. Jr & Hawkins, B. A. Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv. Divers. 3, 172–179 (2010).
Löbl, I., Klausnitzer, B., Hartmann, M. & Krell, F.-T. The silent extinction of species and taxonomists—an appeal to science policymakers and legislators. Diversity 15, 1053 (2023).
Parsons, D. J., Pelletier, T. A., Wieringa, J. G., Duckett, D. J. & Carstens, B. C. Analysis of biodiversity data suggests that mammal species are hidden in predictable places. Proc. Natl Acad. Sci. USA 119, e2103400119 (2022).
Gong, Z. et al. BIOSCAN-CLIP: bridging vision and genomics for biodiversity monitoring at scale. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.17537 (2024).
Zhao, B. & Mac Aodha, O. Incremental generalized category discovery. In 2023 Proc. IEEE/CVF Int. Conf. Comput. Vis. 19080–19090 (IEEE, 2023).
Li, R., Ratnasingham, S., Zarubiieva, I., Somervuo, P. & Taylor, G. W. PROTAX-GPU: a scalable probabilistic taxonomic classification system for DNA barcodes. Phil. Trans. R. Soc. B 379, 20230124 (2024).
Chen, Y. & Rolnick, D. Understanding insect range shifts with out-of-distribution detection. climatechange.ai https://www.climatechange.ai/papers/neurips2023/130/paper.pdf (Climate Change AI, 2023).
Gabeff, V., Rußwurm, M., Tuia, D. & Mathis, A. WildCLIP: scene and animal attribute retrieval from camera trap data with domain-adapted vision-language models. Int. J. Comput. Vis. 132, 3770–3786 (2024).
Paul, D. et al. A simple interpretable transformer for fine-grained image classification and analysis. Preprint at arXiv https://doi.org/10.48550/arXiv.2311.04157 (2024).
Chiquier, M., Mall, U. & Vondrick, C. Evolving interpretable visual classifiers with large language models. In Computer Vision—ECCV 2024: Lecture Notes in Computer Science (eds Leonardis, A. et al.) 15122 (Springer, 2024).
Gonzalez, A. et al. A global biodiversity observing system to unite monitoring and guide action. Nat. Ecol. Evol. 7, 1947–1952 (2023).
Lees, A. C. et al. A roadmap to identifying and filling shortfalls in Neotropical ornithology. Auk 137, ukaa048 (2020).
Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).
Moeller, A. K., Lukacs, P. M. & Horne, J. S. Three novel methods to estimate abundance of unmarked animals using remote cameras. Ecosphere 9, e02331 (2018).
Gilbert, N. A., Clare, J. D. J., Stenglein, J. L. & Zuckerberg, B. Abundance estimation of unmarked animals based on camera-trap data. Conserv. Biol. 35, 88–100 (2021).
Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence–absence data or point counts. Ecology 84, 777–790 (2003).
Strebel, N. et al. Estimating abundance based on time-to-detection data. Meth. Ecol. Evol. 12, 909–920 (2021).
Fiss, C. J. et al. Performance of unmarked abundance models with data from machine-learning classification of passive acoustic recordings. Ecosphere 15, e4954 (2024).
Frommolt, K.-H. & Tauchert, K.-H. Applying bioacoustic methods for long-term monitoring of a nocturnal wetland bird. Ecol. Inform. 21, 4–12 (2014).
Rhinehart, T. A., Chronister, L. M., Devlin, T. & Kitzes, J. Acoustic localization of terrestrial wildlife: current practices and future opportunities. Ecol. Evol. 10, 6794–6818 (2020).
Parham, J., Stewart, C., Berger-Wolf, T., Rubenstein, D. & Holmberg, J. The great Grevy’s rally: a review on procedure. cthulhu.dyn.wildme.io https://cthulhu.dyn.wildme.io/public/papers/parham_ijcai_aiwc_2018.pdf (2018).
Whitehead, H. Computer assisted individual identification of sperm whale flukes. Rep. Int. Whal. Comm. 12, 71–77 (1990).
Crall, J. P., Stewart, C. V., Berger-Wolf, T. Y., Rubenstein, D. I. & Sundaresan, S. R. HotSpotter; patterned species instance recognition. In 2013 IEEE Workshop on Applications of Computer Vision (WACV) 230–237 (IEEE, 2013).
Arzoumanian, Z., Holmberg, J. & Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks, Rhincodon typus. J. Appl. Ecol. 42, 999–1011 (2005).
Ye, M. et al. Deep learning for person re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 44, 2872–2893 (2021).
Nepovinnykh, E. et al. Species-agnostic patterned animal re-identification by aggregating deep local features. Int. J. Comput. Vis. 132, 4003–4018 (2024).
Čermák, V., Picek, L., Adam, L. & Papafitsoros, K. WildlifeDatasets: an open-source toolkit for animal re-identification. In 2024 IEEE/CVF Winter Conf. on Applications of Computer Vision (WACV) 5941–5951 (IEEE, 2024).
Moskvyak, O., Maire, F., Armstrong, A. O., Dayoub, F. & Baktashmotlagh, M. Robust re-identification of manta rays from natural markings by learning pose invariant embeddings. In 2021 Digital Image Computing: Techniques and Applications (DICTA) https://doi.org/10.1109/DICTA52665.2021.9647359 (IEEE, 2021).
Sundaresan, A. et al. Adapting the re-ID challenge for static sensors. Preprint at arXiv https://doi.org/10.48550/arXiv.2412.00290 (2024).
Ravoor, P. C. & Sudarshan, T. S. B. Deep learning methods for multi-species animal re-identification and tracking—a survey. Comput. Sci. Rev. 38, 100289 (2020).
Zuerl, M. et al. PolarBearVidID: a video-based re-identification benchmark dataset for polar bears. Animals 13, 801 (2023).
Kuncheva, L. I., Garrido-Labrador, J. L., Ramos-Pérez, I., Hennessey, S. L. & Rodríguez, J. J. An experiment on animal re-identification from video. Ecol. Inform. 74, 101994 (2023).
Koski, W. R. et al. Evaluation of UAS for photographic re-identification of bowhead whales, Balaena mysticetus. J. Unman. Veh. Syst. 3, 22–29 (2015).
Knight, E. et al. Individual identification in acoustic recordings. Trends Ecol. Evol. 39, 947–960 (2024).
Linhart, P., Mahamoud-Issa, M., Stowell, D. & Blumstein, D. T. The potential for acoustic individual identification in mammals. Mamm. Biol. 102, 667–683 (2022).
Yang, J., Zhou, K., Li, Y. & Liu, Z. Generalized out-of-distribution detection: a survey. Int. J. Comput. Vis. 132, 5635–5662 (2024).
Vaze, S., Han, K., Vedaldi, A. & Zisserman, A. Generalized category discovery. In 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) 7482–7491 (IEEE, 2022).
Kulits, P., Wall, J., Bedetti, A., Henley, M. & Beery, S. ElephantBook: a semi-automated human-in-the-loop system for elephant re-identification. In ACM SIGCAS Conf. on Computing and Sustainable Societies (COMPASS) 88–98 (Association for Computing Machinery, 2021).
Delplanque, A. et al. From crowd to herd counting: how to precisely detect and count African mammals using aerial imagery and deep learning? ISPRS J. Photogramm. Remote. Sens. 197, 167–180 (2023).
Perez, G., Maji, S. & Sheldon, D. DISCount: counting in large image collections with detector-based importance sampling. Proc. AAAI Conf. Artif. Intell. 38, 22294–22302 (2024).
Hebert, P. D. N., Floyd, R., Jafarpour, S. & Prosser, S. W. J. Barcode 100K specimens: in a single nanopore run. Mol. Ecol. Resour. 25, e14028 (2025).
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
Karpatne, A. et al. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2017).
Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B 267, 1947–1952 (2000).
Newsome, T. M. et al. Constraints on vertebrate range size predict extinction risk. Glob. Ecol. Biogeogr. 29, 76–86 (2020).
Staude, I. R., Navarro, L. M. & Pereira, H. M. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).
Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).
Jetz, W. et al. Include biodiversity representation indicators in area-based conservation targets. Nat. Ecol. Evol. 6, 123–126 (2022).
Pimm, S. L. et al. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015).
Geurts, E. M., Reynolds, J. D. & Starzomski, B. M. Turning observations into biodiversity data: broadscale spatial biases in community science. Ecosphere 14, e4582 (2023).
Fretwell, P. T. & Trathan, P. N. Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins. Remote Sens. Ecol. Conserv. 7, 139–153 (2021).
Cubaynes, H. C. & Fretwell, P. T. Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models. Sci. Data 9, 245 (2022).
Mannocci, L. et al. Leveraging social media and deep learning to detect rare megafauna in video surveys. Conserv. Biol. 36, e13798 (2022).
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
Beery, S., Cole, E., Parker, J., Perona, P. & Winner, K. Species distribution modeling for machine learning practitioners: a review. In Proc. 4th ACM SIGCAS Conf. on Computing and Sustainable Societies 329–348 (Association for Computing Machinery, 2021).
Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35, 56–67 (2020).
Botella, C. et al. Overview of GeoLifeCLEF 2023: species composition prediction with high spatial resolution at continental scale using remote sensing. In CLEF 2023—Working Notes of the Conference and Labs of the Evaluation Forum article 3497, 1954–1971 (2023).
Mashiane, K., Ramoelo, A. & Adelabu, S. Prediction of species richness and diversity in sub-alpine grasslands using satellite remote sensing and random forest machine-learning algorithm. Appl. Veg. Sci. 27, e12778 (2024).
Lange, C., Cole, E., Van Horn, G. & Mac Aodha, O. Active learning-based species range estimation. In NIPS 2023: Proc. 37th Int. Conf. on Neural Information Processing Systems article 1815, 41892–41913 (NeurIPS, 2024).
Mondain-Monval, T. et al. Adaptive sampling by citizen scientists improves species distribution model performance: a simulation study. Meth. Ecol. Evol. 15, 1206–1220 (2024).
Seaton, F. M., Jarvis, S. G. & Henrys, P. A. Spatio-temporal data integration for species distribution modelling in R-INLA. Meth. Ecol. Evol. 15, 1221–1232 (2024).
Pollock, L. J. et al. Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (JSDM). Meth. Ecol. Evol. 5, 397–406 (2014).
Caradima, B., Schuwirth, N. & Reichert, P. From individual to joint species distribution models: a comparison of model complexity and predictive performance. J. Biogeogr. 46, 2260–2274 (2019).
Talluto, M. V., Mokany, K., Pollock, L. J. & Thuiller, W. Multifaceted biodiversity modelling at macroecological scales using Gaussian processes. Divers. Distrib. 24, 1492–1502 (2018).
Chen, D. & Gomes, C. P. Bias reduction via end-to-end shift learning: application to citizen science. In Proc. Thirty-Third AAAI Conf. on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conf. and Ninth AAAI Symp. on Educational Advances in Artificial Intelligence 493–500 (AAAI Press, 2019).
Rolf, E. et al. A generalizable and accessible approach to machine learning with global satellite imagery. Nat. Commun. 12, 4392 (2021).
Klemmer, K., Rolf, E., Robinson, C., Mackey, L. & Rußwurm, M. SatCLIP: global, general-purpose location embeddings with satellite imagery. Preprint at arXiv https://doi.org/10.48550/arXiv.2311.17179 (2024).
Cole, E. et al. Spatial implicit neural representations for global-scale species mapping. In Proc. 40th Int. Conf. on Machine Learning article 202, 6320–6342 (PMLR, 2023).
Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J. & Elith, J. Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol. Monogr. 92, e01486 (2022).
Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).
Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).
Anderson, R. P. A framework for using niche models to estimate impacts of climate change on species distributions. Ann. NY Acad. Sci. 1297, 8–28 (2013).
Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).
Childress, E. S. & Letcher, B. H. Estimating thermal performance curves from repeated field observations. Ecology 98, 1377–1387 (2017).
Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).
Jetz, W. et al. Biological Earth observation with animal sensors. Trends Ecol. Evol. 37, 293–298 (2022).
Deetjen, M. E., Biewener, A. A. & Lentink, D. High-speed surface reconstruction of a flying bird using structured light. J. Exp. Biol. 220, 1956–1961 (2017).
Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).
Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Meth. 19, 486–495 (2022).
Wei, J. N. et al. A deep learning and digital archaeology approach for mosquito repellent discovery. Preprint at bioRxiv https://doi.org/10.1101/2022.09.01.504601 (2024).
Nativi, S., Mazzetti, P. & Craglia, M. Digital ecosystems for developing digital twins of the Earth: the Destination Earth case. Remote. Sens. 13, 2119 (2021).
Koning, Kde et al. Digital twins: dynamic model-data fusion for ecology. Trends Ecol. Evol. 38, 916–926 (2023).
Trantas, A., Plug, R., Pileggi, P. & Lazovik, E. Digital twin challenges in biodiversity modelling. Ecol. Inform. 78, 102357 (2023).
Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).
Oskyrko, O., Mi, C., Meiri, S. & Du, W. ReptTraits: a comprehensive dataset of ecological traits in reptiles. Sci. Data 11, 243 (2024).
Shirey, V. et al. LepTraits 1.0: a globally comprehensive dataset of butterfly traits. Sci. Data 9, 382 (2022).
Sheard, C. et al. Nest traits for the world’s birds. Glob. Ecol. Biogeogr. 33, 206–214 (2024).
Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).
Murphy, S. J. et al. SAviTraits 1.0: seasonally varying dietary attributes for birds. Glob. Ecol. Biogeogr. 32, 1690–1698 (2023).
Madin, J. S. et al. The coral trait database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).
Cébron, A. et al. BactoTraits—a functional trait database to evaluate how natural and man-induced changes influence the assembly of bacterial communities. Ecol. Indic. 130, 108047 (2021).
Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).
Augusto, L. & Boča, A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nat. Commun. 13, 1097 (2022).
Wilde, B. C., Bragg, J. G. & Cornwell, W. Analyzing trait–climate relationships within and among taxa using machine learning and herbarium specimens. Am. J. Bot. 110, e16167 (2023).
Kline, J. et al. A framework for autonomic computing for in situ imageomics. In 2023 IEEE Int. Conf. on Autonomic Computing and Self-Organizing Systems (ACSOS) 11–16 (IEEE, 2023).
Hoyal Cuthill, J. F., Guttenberg, N. & Huertas, B. Male and female contributions to diversity among birdwing butterfly images. Commun. Biol. 7, 774 (2024).
Stoddard, M. C., Kilner, R. M. & Town, C. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nat. Commun. 5, 4117 (2014).
Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).
Marcos, D., Potze, A., Xu, W., Tuia, D. & Akata, Z. Attribute prediction as multiple instance learning. Trans. Mach. Learn. Res. 8, 253156463 (2022).
Crofts, A. L. et al. Linking aerial hyperspectral data to canopy tree biodiversity: an examination of the spectral variation hypothesis. Ecol. Monogr. 94, e1605 (2024).
Wilson, O. J. The 3D pollen project: an open repository of three-dimensional data for outreach, education and research. Rev. Palaeobot. Palynol. 312, 104860 (2023).
Fabian, S. T., Sondhi, Y., Allen, P. E., Theobald, J. C. & Lin, H.-T. Why flying insects gather at artificial light. Nat. Commun. 15, 689 (2024).
Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).
Diniz Filho, J. A. F. et al. Macroecological links between the Linnean, Wallacean, and Darwinian shortfalls. Front. Biogeogr. 15, e59566 (2023).
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).
Warnow, T. Computational Phylogenetics: An Introduction to Designing Methods for Phylogeny Estimation (Cambridge Univ. Press, 2017).
Mo, Y. K., Hahn, M. W. & Smith, M. L. Applications of machine learning in phylogenetics. Mol. Phylogenet. Evol. 196, 108066 (2024).
Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A. & Tsuboi, M. Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. Front. Ecol. Evol. 9, 642774 (2021).
Younis, S. et al. Taxon and trait recognition from digitized herbarium specimens using deep convolutional neural networks. Bot. Lett. 165, 377–383 (2018).
Weaver, W. N., Ng, J. & Laport, R. G. LeafMachine: using machine learning to automate leaf trait extraction from digitized herbarium specimens. Appl. Plant. Sci. 8, e11367 (2020).
Stupp, D. et al. Co-evolution based machine-learning for predicting functional interactions between human genes. Nat. Commun. 12, 6454 (2021).
Elhamod, M. et al. Discovering novel biological traits from images using phylogeny-guided neural networks. In Proc. 29th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD 2023) 3966–3978 (Association for Computing Machinery, 2023).
Meagher, J. P., Damoulas, T., Jones, K. E. & Girolami, M. in Statistical Data Science (ed. Adams, N.) Ch. 7, 111–124 (World Scientific, 2018).
Nguyen, T. Q., Ebnesajjad, C., Cole, S. R. & Stuart, E. A. Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects. Ann. Appl. Stat. 11, 225–247 (2017).
Blackburn, D. C. et al. Increasing the impact of vertebrate scientific collections through 3D imaging: the openVertebrate (oVert) thematic collections network. BioScience 74, 169–186 (2024).
Yang, C.-H. et al. Arboretum: a large multimodal dataset enabling AI for biodiversity. Preprint at arXiv https://doi.org/10.48550/arXiv.2406.17720 (2024).
Gharaee, Z. et al. BIOSCAN-5M: a multimodal dataset for insect biodiversity. Preprint at arXiv https://doi.org/10.48550/arXiv.2406.12723 (2024).
Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).
Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. Defining and evaluating predictions of joint species distribution models. Meth. Ecol. Evol. 12, 394–404 (2021).
Schliep, E. M. et al. Joint species distribution modelling for spatio‐temporal occurrence and ordinal abundance data. Glob. Ecol. Biogeogr. 27, 142–155 (2018).
Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).
Ratnayake, M. N., Dyer, A. G. & Dorin, A. Tracking individual honeybees among wildflower clusters with computer vision-facilitated pollinator monitoring. PLoS ONE 16, e0239504 (2021).
Liu, J. & Wang, X. Plant diseases and pests detection based on deep learning: a review. Plant. Meth. 17, 22 (2021).
Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).
Nawoya, S. et al. Computer vision and deep learning in insects for food and feed production: a review. Comput. Electron. Agric. 216, 108503 (2024).
Folliot, A., Haupert, S., Ducrettet, M., Sèbe, F. & Sueur, J. Using acoustics and artificial intelligence to monitor pollination by insects and tree use by woodpeckers. Sci. Total. Environ. 838, 155883 (2022).
Ornai, A. & Keasar, T. Floral complexity traits as predictors of plant-bee interactions in a Mediterranean pollination web. Plants 9, 1432 (2020).
Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M. & Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Meth. Ecol. Evol. 11, 281–293 (2020).
Sydenham, M. A. K. et al. MetaComNet: a random forest-based framework for making spatial predictions of plant–pollinator interactions. Meth. Ecol. Evol. 13, 500–513 (2022).
Caron, D., Maiorano, L., Thuiller, W. & Pollock, L. J. Addressing the Eltonian shortfall with trait-based interaction models. Ecol. Lett. 25, 889–899 (2022).
Llewelyn, J. et al. Predicting predator–prey interactions in terrestrial endotherms using random forest. Ecography 2023, e06619 (2023).
Kotula, H. J., Peralta, G., Frost, C. M., Todd, J. H. & Tylianakis, J. M. Predicting direct and indirect non-target impacts of biocontrol agents using machine-learning approaches. PLoS ONE 16, e0252448 (2021).
Roslin, T. & Majaneva, S. The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite! Genome 59, 603–628 (2016).
Adhurya, S. & Park, Y.-S. A novel method for predicting ecological interactions with an unsupervised machine learning algorithm. Methods Ecol. Evol. 15, 1247–1260 (2024).
Strydom, T. et al. A roadmap towards predicting species interaction networks (across space and time). Phil. Trans. R. Soc. B 376, 20210063 (2021).
Strydom, T. et al. Food web reconstruction through phylogenetic transfer of low-rank network representation. Meth. Ecol. Evol. 13, 2838–2849 (2022).
Suraci, J. P. et al. Beyond spatial overlap: harnessing new technologies to resolve the complexities of predator–prey interactions. Oikos 2022, e09004 (2022).
Caron, D. et al. Trait-matching models predict pairwise interactions across regions, not food web properties. Glob. Ecol. Biogeogr. 33, e13807 (2024).
Corso, G., Stark, H., Jegelka, S., Jaakkola, T. & Barzilay, R. Graph neural networks. Nat. Rev. Meth. Primer 4, 17 (2024).
Hamilton, W. L. Graph representation learning. In Synthesis Lectures on Artificial Intelligence and Machine Learning (SLAIML) https://doi.org/10.1007/978-3-031-01588-5 (Springer, 2020).
Kim, J. et al. Pure transformers are powerful graph learners. In Proc. 36th Int. Conf. on Neural Information Processing Systems (NIPS 2022) article 1060, 14582–14595 (NeurIPS, 2022).
Strydom, T. et al. Graph embedding and transfer learning can help predict potential species interaction networks despite data limitations. Meth. Ecol. Evol. 14, 2917–2930 (2023).
Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).
McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).
O’Connor, L. M. J. et al. Vulnerability of terrestrial vertebrate food webs to anthropogenic threats in Europe. Glob. Change Biol. 30, e17253 (2024).
Fricke, E. et al. Collapse of terrestrial mammal food webs since the Late Pleistocene. Science 377, 1008–1011 (2022).
Elliott, M. J. & Fortes, J. A. B. Toward reliable biodiversity information extraction from large language models. In 2024 IEEE 20th Int. Conf. on e-Science (IEEE, 2024).
Bledsoe, E. K. et al. Data rescue: saving environmental data from extinction. Proc. R. Soc. B 289, 20220938 (2022).
Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Proc. 34th Int. Conf. on Neural Information Processing Systems (NIPS 2020) article 793, 9459–9474 (NeurIPS, 2020).
Berger-Tal, O. et al. Leveraging AI to improve evidence synthesis in conservation. Trends Ecol. Evol. 39, 548–557 (2024).
Ryo, M. et al. Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models. Ecography 44, 199–205 (2021).
Runge, J. et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 10, 2553 (2019).
Camps-Valls, G. et al. Discovering causal relations and equations from data. Phys. Rep. 1044, 1–68 (2023).
Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating scientific knowledge with machine learning for engineering and environmental systems. ACM Comput. Surv. 55, 66 (2022).
Liu, L. et al. Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nat. Commun. 15, 357 (2024).
Hartig, F. et al. Novel community data in ecology-properties and prospects. Trends Ecol. Evol. 39, 280–293 (2024).
Niazi, S. K. & Mariam, Z. Computer-aided drug design and drug discovery: a prospective analysis. Pharmaceuticals 17, 22 (2024).
Guo, K., Yang, Z., Yu, C.-H. & Buehler, M. J. Artificial intelligence and machine learning in design of mechanical materials. Mater. Horiz. 8, 1153–1172 (2021).
Han, Z., Zhang, L., Jiang, Y., Wang, H. & Jiguet, F. Unravelling species co-occurrence in a steppe bird community of Inner Mongolia: insights for the conservation of the endangered Jankowski’s bunting. Divers. Distrib. 26, 843–852 (2020).
Zérah, Y., Valero, S. & Inglada, J. Physics-driven probabilistic deep learning for the inversion of physical models with application to phenological parameter retrieval from satellite times series. IEEE Trans. Geosci. Remote. Sens. 61, 4404723 (2023).
Karpatne, A., Kannan, R. & Kumar, V. (eds) Knowledge Guided Machine Learning: Accelerating Discovery Using Scientific Knowledge and Data: Data Mining and Knowledge Discovery Series (CRC Press, 2023).
Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K. & Grover, A. ClimaX: a foundation model for weather and climate. In Proc. 40th Int. Conf. on Machine Learning (ICML 2023) 25904–25938 (PMLR, 2023).
Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1412 (2023).
de Bézenac, E., Pajot, A. & Gallinari, P. Deep learning for physical processes: incorporating prior scientific knowledge. J. Stat. Mech. 2019, 124009 (2019).
Rolnick, D. et al. Position: application-driven innovation in machine learning. In Proc. 41st Int. Conf. on Machine Learning article 235, 42707–42718 (PMLR, 2024).
Harvey, E., Gounand, I., Ward, C. L. & Altermatt, F. Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. 54, 371–379 (2017).
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
Mahecha, M. D. et al. Earth system data cubes unravel global multivariate dynamics. Earth Syst. Dyn. 11, 201–234 (2020).
Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1, 0176 (2017).
Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteor. Soc. 95, 1431–1443 (2014).
Skidmore, A. K. & Pettorelli, N. Agree on biodiversity metrics to track from space: ecologists and space agencies must forge a global monitoring strategy. Nature 523, 403–406 (2015).
Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 7, 1778–1789 (2023).
Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016).
Moreno-Martínez, Á. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote. Sens. Environ. 218, 69–88 (2018).
Yang, H. et al. Global patterns of tree wood density. Glob. Change Biol. 30, e17224 (2024).
Wolf, S. et al. Citizen science plant observations encode global trait patterns. Nat. Ecol. Evol. 6, 1850–1859 (2022).
Gómez-Chova, L., Tuia, D., Moser, G. & Camps-Valls, G. Multimodal classification of remote sensing images: a review and future directions. Proc. IEEE 103, 1560–1584 (2015).
Bachmann, R., Mizrahi, D., Atanov, A. & Zamir, A. MultiMAE: multi-modal multi-task masked autoencoders. Computer Vision—ECCV 2022 17th Eur. Conf. Proc. XXXVII 348–367 (Springer, 2022).
Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).
Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).
Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).
Exposito-Alonso, M. et al. Genetic diversity loss in the Anthropocene. Science 377, 1431–1435 (2022).
Schmidt, C., Hoban, S., Hunter, M., Paz-Vinas, I. & Garroway, C. J. Genetic diversity and IUCN Red List status. Conserv. Biol. 37, e14064 (2023).
Yates, M. C., Derry, A. M. & Cristescu, M. E. Environmental RNA: a revolution in ecological resolution? Trends Ecol. Evol. 36, 601–609 (2021).
Cristescu, M. E. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 34, 694–697 (2019).
Hobern, D. BIOSCAN: DNA barcoding to accelerate taxonomy and biogeography for conservation and sustainability. Genome 64, 161–164 (2021).
Li, Z., Cranganore, S. S., Youngblut, N. & Kilbertus, N. Whole genome transformer for gene interaction effects in microbiome habitat specificity. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.05998 (2024).
Srivathsan, A. & Meier, R. Scalable, cost-effective, and decentralized DNA barcoding with Oxford nanopore sequencing. Meth. Mol. Biol. 2744, 223–238 (2024).
Meier, R., Hartop, E., Pylatiuk, C. & Srivathsan, A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Phil. Trans. R. Soc. B 379, 20230120 (2024).
Pei, W. et al. Megabarcoding reveals a tale of two very different dark taxa along the same elevational gradient. Preprint at bioRxiv https://doi.org/10.1101/2024.04.29.591578 (2024).
Dalla-Torre, H. et al. Nucleotide transformer: building and evaluating robust foundation models for human genomics. Nat. Meth. https://doi.org/10.1038/s41592-024-02523-z (2024).
Zhou, Z. et al. DNABERT-S: learning species-aware DNA embedding with genome foundation models. Preprint at arXiv https://doi.org/10.48550/arXiv.2402.08777 (2024).
Richard, G. et al. ChatNT: a multimodal conversational agent for DNA, RNA and protein tasks. Preprint at bioRxiv https://doi.org/10.1101/2024.04.30.591835 (2024).
Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Meth. 21, 1470–1480 (2024).
Luccioni, S., Jernite, Y. & Strubell, E. Power hungry processing: watts driving the cost of AI deployment? In Proc. 2024 ACM Conf. on Fairness, Accountability, and Transparency (FAccT) 85–99 (Association for Computing Machinery, 2024).