Harnessing artificial intelligence to fill global shortfalls in biodiversity knowledge


  • COP15: final text of Kunming–Montréal Global Biodiversity Framework. Convention on Biological Diversity https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222 (2022).

  • Caldwell, I. R. et al. Global trends and biases in biodiversity conservation research. Cell Rep. Sustain. 1, 100082 (2024).


    Google Scholar
     

  • García-Roselló, E., González-Dacosta, J. & Lobo, J. M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 283, 110118 (2023).


    Google Scholar
     

  • Daru, B. H. & Rodriguez, J. Mass production of unvouchered records fails to represent global biodiversity patterns. Nat. Ecol. Evol. 7, 816–831 (2023).


    Google Scholar
     

  • Daru, B. H. et al. Widespread sampling biases in herbaria revealed from large-scale digitization. N. Phytol. 217, 939–955 (2018).


    Google Scholar
     

  • Raven, P. H. & Wilson, E. O. A fifty-year plan for biodiversity surveys. Science 258, 1099–1100 (1992).

    CAS 

    Google Scholar
     

  • Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).


    Google Scholar
     

  • Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    CAS 

    Google Scholar
     

  • Berger-Tal, O. & Lahoz-Monfort, J. J. Conservation technology: the next generation. Conserv. Lett. 11, e12458 (2018).


    Google Scholar
     

  • Tuia, D. et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 13, 792 (2022).

    CAS 

    Google Scholar
     

  • Barta, Z. Deep learning in terrestrial conservation biology. Biol. Futura 74, 359–367 (2023).


    Google Scholar
     

  • Stowell, D. Computational bioacoustics with deep learning: a review and roadmap. PeerJ 10, e13152 (2022).


    Google Scholar
     

  • Weinstein, B. G. A computer vision for animal ecology. J. Anim. Ecol. 87, 533–545 (2018).


    Google Scholar
     

  • Schneider, S., Taylor, G. W., Linquist, S. & Kremer, S. C. Past, present and future approaches using computer vision for animal re-identification from camera trap data. Meth. Ecol. Evol. 10, 461–470 (2019).


    Google Scholar
     

  • Tuia, D. et al. Toward a collective agenda on AI for Earth science data analysis. IEEE Geosci. Remote. Sens. Mag. 9, 88–104 (2021).


    Google Scholar
     

  • Biodiversity and Artificial Intelligence: Opportunities & Recommendations for Action. The Global Partnership on AI https://gpai.ai/projects/responsible-ai/environment/biodiversity-and-AI-opportunities-recommendations-for-action.pdf (2022).

  • Pichler, M. & Hartig, F. Machine learning and deep learning—a review for ecologists. Meth. Ecol. Evol. 14, 994–1016 (2023).


    Google Scholar
     

  • Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).


    Google Scholar
     

  • Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, 6723 (2024).


    Google Scholar
     

  • Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Meth. 21, 1481–1491 (2024).

    CAS 

    Google Scholar
     

  • Rosen, Y. et al. Universal cell embeddings: a foundation model for cell biology. Preprint at bioRxiv https://doi.org/10.1101/2023.11.28.568918 (2023).

  • Stevens, S. et al. BioCLIP: a vision foundation model for the tree of life. In 2024 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) 19412–19424 (IEEE, 2024).

  • Bánki, O. Catalogue of Life Annual Release 2024. Catalogue of Life https://www.catalogueoflife.org/2024/06/27/release (2024).

  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).

    CAS 

    Google Scholar
     

  • Caley, M. J., Fisher, R. & Mengersen, K. Global species richness estimates have not converged. Trends Ecol. Evol. 29, 187–188 (2014).


    Google Scholar
     

  • Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).


    Google Scholar
     

  • Winter, M. et al. Patterns and biases in climate change research on amphibians and reptiles: a systematic review. R. Soc. Open Sci. 3, 160158 (2016).


    Google Scholar
     

  • Diniz-Filho, J. A. F., De Marco, P. Jr & Hawkins, B. A. Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv. Divers. 3, 172–179 (2010).


    Google Scholar
     

  • Löbl, I., Klausnitzer, B., Hartmann, M. & Krell, F.-T. The silent extinction of species and taxonomists—an appeal to science policymakers and legislators. Diversity 15, 1053 (2023).


    Google Scholar
     

  • Parsons, D. J., Pelletier, T. A., Wieringa, J. G., Duckett, D. J. & Carstens, B. C. Analysis of biodiversity data suggests that mammal species are hidden in predictable places. Proc. Natl Acad. Sci. USA 119, e2103400119 (2022).

    CAS 

    Google Scholar
     

  • Gong, Z. et al. BIOSCAN-CLIP: bridging vision and genomics for biodiversity monitoring at scale. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.17537 (2024).

  • Zhao, B. & Mac Aodha, O. Incremental generalized category discovery. In 2023 Proc. IEEE/CVF Int. Conf. Comput. Vis. 19080–19090 (IEEE, 2023).

  • Li, R., Ratnasingham, S., Zarubiieva, I., Somervuo, P. & Taylor, G. W. PROTAX-GPU: a scalable probabilistic taxonomic classification system for DNA barcodes. Phil. Trans. R. Soc. B 379, 20230124 (2024).

    CAS 

    Google Scholar
     

  • Chen, Y. & Rolnick, D. Understanding insect range shifts with out-of-distribution detection. climatechange.ai https://www.climatechange.ai/papers/neurips2023/130/paper.pdf (Climate Change AI, 2023).

  • Gabeff, V., Rußwurm, M., Tuia, D. & Mathis, A. WildCLIP: scene and animal attribute retrieval from camera trap data with domain-adapted vision-language models. Int. J. Comput. Vis. 132, 3770–3786 (2024).


    Google Scholar
     

  • Paul, D. et al. A simple interpretable transformer for fine-grained image classification and analysis. Preprint at arXiv https://doi.org/10.48550/arXiv.2311.04157 (2024).

  • Chiquier, M., Mall, U. & Vondrick, C. Evolving interpretable visual classifiers with large language models. In Computer Vision—ECCV 2024: Lecture Notes in Computer Science (eds Leonardis, A. et al.) 15122 (Springer, 2024).

  • Gonzalez, A. et al. A global biodiversity observing system to unite monitoring and guide action. Nat. Ecol. Evol. 7, 1947–1952 (2023).


    Google Scholar
     

  • Lees, A. C. et al. A roadmap to identifying and filling shortfalls in Neotropical ornithology. Auk 137, ukaa048 (2020).


    Google Scholar
     

  • Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).


    Google Scholar
     

  • Moeller, A. K., Lukacs, P. M. & Horne, J. S. Three novel methods to estimate abundance of unmarked animals using remote cameras. Ecosphere 9, e02331 (2018).


    Google Scholar
     

  • Gilbert, N. A., Clare, J. D. J., Stenglein, J. L. & Zuckerberg, B. Abundance estimation of unmarked animals based on camera-trap data. Conserv. Biol. 35, 88–100 (2021).


    Google Scholar
     

  • Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence–absence data or point counts. Ecology 84, 777–790 (2003).


    Google Scholar
     

  • Strebel, N. et al. Estimating abundance based on time-to-detection data. Meth. Ecol. Evol. 12, 909–920 (2021).


    Google Scholar
     

  • Fiss, C. J. et al. Performance of unmarked abundance models with data from machine-learning classification of passive acoustic recordings. Ecosphere 15, e4954 (2024).


    Google Scholar
     

  • Frommolt, K.-H. & Tauchert, K.-H. Applying bioacoustic methods for long-term monitoring of a nocturnal wetland bird. Ecol. Inform. 21, 4–12 (2014).


    Google Scholar
     

  • Rhinehart, T. A., Chronister, L. M., Devlin, T. & Kitzes, J. Acoustic localization of terrestrial wildlife: current practices and future opportunities. Ecol. Evol. 10, 6794–6818 (2020).


    Google Scholar
     

  • Parham, J., Stewart, C., Berger-Wolf, T., Rubenstein, D. & Holmberg, J. The great Grevy’s rally: a review on procedure. cthulhu.dyn.wildme.io https://cthulhu.dyn.wildme.io/public/papers/parham_ijcai_aiwc_2018.pdf (2018).

  • Whitehead, H. Computer assisted individual identification of sperm whale flukes. Rep. Int. Whal. Comm. 12, 71–77 (1990).


    Google Scholar
     

  • Crall, J. P., Stewart, C. V., Berger-Wolf, T. Y., Rubenstein, D. I. & Sundaresan, S. R. HotSpotter; patterned species instance recognition. In 2013 IEEE Workshop on Applications of Computer Vision (WACV) 230–237 (IEEE, 2013).

  • Arzoumanian, Z., Holmberg, J. & Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks, Rhincodon typus. J. Appl. Ecol. 42, 999–1011 (2005).


    Google Scholar
     

  • Ye, M. et al. Deep learning for person re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 44, 2872–2893 (2021).


    Google Scholar
     

  • Nepovinnykh, E. et al. Species-agnostic patterned animal re-identification by aggregating deep local features. Int. J. Comput. Vis. 132, 4003–4018 (2024).


    Google Scholar
     

  • Čermák, V., Picek, L., Adam, L. & Papafitsoros, K. WildlifeDatasets: an open-source toolkit for animal re-identification. In 2024 IEEE/CVF Winter Conf. on Applications of Computer Vision (WACV) 5941–5951 (IEEE, 2024).

  • Moskvyak, O., Maire, F., Armstrong, A. O., Dayoub, F. & Baktashmotlagh, M. Robust re-identification of manta rays from natural markings by learning pose invariant embeddings. In 2021 Digital Image Computing: Techniques and Applications (DICTA) https://doi.org/10.1109/DICTA52665.2021.9647359 (IEEE, 2021).

  • Sundaresan, A. et al. Adapting the re-ID challenge for static sensors. Preprint at arXiv https://doi.org/10.48550/arXiv.2412.00290 (2024).

  • Ravoor, P. C. & Sudarshan, T. S. B. Deep learning methods for multi-species animal re-identification and tracking—a survey. Comput. Sci. Rev. 38, 100289 (2020).


    Google Scholar
     

  • Zuerl, M. et al. PolarBearVidID: a video-based re-identification benchmark dataset for polar bears. Animals 13, 801 (2023).


    Google Scholar
     

  • Kuncheva, L. I., Garrido-Labrador, J. L., Ramos-Pérez, I., Hennessey, S. L. & Rodríguez, J. J. An experiment on animal re-identification from video. Ecol. Inform. 74, 101994 (2023).


    Google Scholar
     

  • Koski, W. R. et al. Evaluation of UAS for photographic re-identification of bowhead whales, Balaena mysticetus. J. Unman. Veh. Syst. 3, 22–29 (2015).


    Google Scholar
     

  • Knight, E. et al. Individual identification in acoustic recordings. Trends Ecol. Evol. 39, 947–960 (2024).


    Google Scholar
     

  • Linhart, P., Mahamoud-Issa, M., Stowell, D. & Blumstein, D. T. The potential for acoustic individual identification in mammals. Mamm. Biol. 102, 667–683 (2022).


    Google Scholar
     

  • Yang, J., Zhou, K., Li, Y. & Liu, Z. Generalized out-of-distribution detection: a survey. Int. J. Comput. Vis. 132, 5635–5662 (2024).


    Google Scholar
     

  • Vaze, S., Han, K., Vedaldi, A. & Zisserman, A. Generalized category discovery. In 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) 7482–7491 (IEEE, 2022).

  • Kulits, P., Wall, J., Bedetti, A., Henley, M. & Beery, S. ElephantBook: a semi-automated human-in-the-loop system for elephant re-identification. In ACM SIGCAS Conf. on Computing and Sustainable Societies (COMPASS) 88–98 (Association for Computing Machinery, 2021).

  • Delplanque, A. et al. From crowd to herd counting: how to precisely detect and count African mammals using aerial imagery and deep learning? ISPRS J. Photogramm. Remote. Sens. 197, 167–180 (2023).


    Google Scholar
     

  • Perez, G., Maji, S. & Sheldon, D. DISCount: counting in large image collections with detector-based importance sampling. Proc. AAAI Conf. Artif. Intell. 38, 22294–22302 (2024).


    Google Scholar
     

  • Hebert, P. D. N., Floyd, R., Jafarpour, S. & Prosser, S. W. J. Barcode 100K specimens: in a single nanopore run. Mol. Ecol. Resour. 25, e14028 (2025).


    Google Scholar
     

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    CAS 

    Google Scholar
     

  • Karpatne, A. et al. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2017).


    Google Scholar
     

  • Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B 267, 1947–1952 (2000).

    CAS 

    Google Scholar
     

  • Newsome, T. M. et al. Constraints on vertebrate range size predict extinction risk. Glob. Ecol. Biogeogr. 29, 76–86 (2020).


    Google Scholar
     

  • Staude, I. R., Navarro, L. M. & Pereira, H. M. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).


    Google Scholar
     

  • Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).


    Google Scholar
     

  • Jetz, W. et al. Include biodiversity representation indicators in area-based conservation targets. Nat. Ecol. Evol. 6, 123–126 (2022).


    Google Scholar
     

  • Pimm, S. L. et al. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015).


    Google Scholar
     

  • Geurts, E. M., Reynolds, J. D. & Starzomski, B. M. Turning observations into biodiversity data: broadscale spatial biases in community science. Ecosphere 14, e4582 (2023).


    Google Scholar
     

  • Fretwell, P. T. & Trathan, P. N. Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins. Remote Sens. Ecol. Conserv. 7, 139–153 (2021).


    Google Scholar
     

  • Cubaynes, H. C. & Fretwell, P. T. Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models. Sci. Data 9, 245 (2022).


    Google Scholar
     

  • Mannocci, L. et al. Leveraging social media and deep learning to detect rare megafauna in video surveys. Conserv. Biol. 36, e13798 (2022).


    Google Scholar
     

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 

    Google Scholar
     

  • Beery, S., Cole, E., Parker, J., Perona, P. & Winner, K. Species distribution modeling for machine learning practitioners: a review. In Proc. 4th ACM SIGCAS Conf. on Computing and Sustainable Societies 329–348 (Association for Computing Machinery, 2021).

  • Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35, 56–67 (2020).


    Google Scholar
     

  • Botella, C. et al. Overview of GeoLifeCLEF 2023: species composition prediction with high spatial resolution at continental scale using remote sensing. In CLEF 2023—Working Notes of the Conference and Labs of the Evaluation Forum article 3497, 1954–1971 (2023).

  • Mashiane, K., Ramoelo, A. & Adelabu, S. Prediction of species richness and diversity in sub-alpine grasslands using satellite remote sensing and random forest machine-learning algorithm. Appl. Veg. Sci. 27, e12778 (2024).


    Google Scholar
     

  • Lange, C., Cole, E., Van Horn, G. & Mac Aodha, O. Active learning-based species range estimation. In NIPS 2023: Proc. 37th Int. Conf. on Neural Information Processing Systems article 1815, 41892–41913 (NeurIPS, 2024).

  • Mondain-Monval, T. et al. Adaptive sampling by citizen scientists improves species distribution model performance: a simulation study. Meth. Ecol. Evol. 15, 1206–1220 (2024).


    Google Scholar
     

  • Seaton, F. M., Jarvis, S. G. & Henrys, P. A. Spatio-temporal data integration for species distribution modelling in R-INLA. Meth. Ecol. Evol. 15, 1221–1232 (2024).


    Google Scholar
     

  • Pollock, L. J. et al. Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (JSDM). Meth. Ecol. Evol. 5, 397–406 (2014).


    Google Scholar
     

  • Caradima, B., Schuwirth, N. & Reichert, P. From individual to joint species distribution models: a comparison of model complexity and predictive performance. J. Biogeogr. 46, 2260–2274 (2019).


    Google Scholar
     

  • Talluto, M. V., Mokany, K., Pollock, L. J. & Thuiller, W. Multifaceted biodiversity modelling at macroecological scales using Gaussian processes. Divers. Distrib. 24, 1492–1502 (2018).


    Google Scholar
     

  • Chen, D. & Gomes, C. P. Bias reduction via end-to-end shift learning: application to citizen science. In Proc. Thirty-Third AAAI Conf. on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conf. and Ninth AAAI Symp. on Educational Advances in Artificial Intelligence 493–500 (AAAI Press, 2019).

  • Rolf, E. et al. A generalizable and accessible approach to machine learning with global satellite imagery. Nat. Commun. 12, 4392 (2021).

    CAS 

    Google Scholar
     

  • Klemmer, K., Rolf, E., Robinson, C., Mackey, L. & Rußwurm, M. SatCLIP: global, general-purpose location embeddings with satellite imagery. Preprint at arXiv https://doi.org/10.48550/arXiv.2311.17179 (2024).

  • Cole, E. et al. Spatial implicit neural representations for global-scale species mapping. In Proc. 40th Int. Conf. on Machine Learning article 202, 6320–6342 (PMLR, 2023).

  • Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J. & Elith, J. Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol. Monogr. 92, e01486 (2022).


    Google Scholar
     

  • Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).

    CAS 

    Google Scholar
     

  • Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).


    Google Scholar
     

  • Anderson, R. P. A framework for using niche models to estimate impacts of climate change on species distributions. Ann. NY Acad. Sci. 1297, 8–28 (2013).


    Google Scholar
     

  • Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).


    Google Scholar
     

  • Childress, E. S. & Letcher, B. H. Estimating thermal performance curves from repeated field observations. Ecology 98, 1377–1387 (2017).


    Google Scholar
     

  • Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).

  • Jetz, W. et al. Biological Earth observation with animal sensors. Trends Ecol. Evol. 37, 293–298 (2022).


    Google Scholar
     

  • Deetjen, M. E., Biewener, A. A. & Lentink, D. High-speed surface reconstruction of a flying bird using structured light. J. Exp. Biol. 220, 1956–1961 (2017).


    Google Scholar
     

  • Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

    CAS 

    Google Scholar
     

  • Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Meth. 19, 486–495 (2022).

    CAS 

    Google Scholar
     

  • Wei, J. N. et al. A deep learning and digital archaeology approach for mosquito repellent discovery. Preprint at bioRxiv https://doi.org/10.1101/2022.09.01.504601 (2024).

  • Nativi, S., Mazzetti, P. & Craglia, M. Digital ecosystems for developing digital twins of the Earth: the Destination Earth case. Remote. Sens. 13, 2119 (2021).


    Google Scholar
     

  • Koning, Kde et al. Digital twins: dynamic model-data fusion for ecology. Trends Ecol. Evol. 38, 916–926 (2023).


    Google Scholar
     

  • Trantas, A., Plug, R., Pileggi, P. & Lazovik, E. Digital twin challenges in biodiversity modelling. Ecol. Inform. 78, 102357 (2023).


    Google Scholar
     

  • Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).


    Google Scholar
     

  • Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).


    Google Scholar
     

  • Oskyrko, O., Mi, C., Meiri, S. & Du, W. ReptTraits: a comprehensive dataset of ecological traits in reptiles. Sci. Data 11, 243 (2024).


    Google Scholar
     

  • Shirey, V. et al. LepTraits 1.0: a globally comprehensive dataset of butterfly traits. Sci. Data 9, 382 (2022).


    Google Scholar
     

  • Sheard, C. et al. Nest traits for the world’s birds. Glob. Ecol. Biogeogr. 33, 206–214 (2024).


    Google Scholar
     

  • Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).


    Google Scholar
     

  • Murphy, S. J. et al. SAviTraits 1.0: seasonally varying dietary attributes for birds. Glob. Ecol. Biogeogr. 32, 1690–1698 (2023).


    Google Scholar
     

  • Madin, J. S. et al. The coral trait database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).


    Google Scholar
     

  • Cébron, A. et al. BactoTraits—a functional trait database to evaluate how natural and man-induced changes influence the assembly of bacterial communities. Ecol. Indic. 130, 108047 (2021).


    Google Scholar
     

  • Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).


    Google Scholar
     

  • Augusto, L. & Boča, A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nat. Commun. 13, 1097 (2022).

    CAS 

    Google Scholar
     

  • Wilde, B. C., Bragg, J. G. & Cornwell, W. Analyzing trait–climate relationships within and among taxa using machine learning and herbarium specimens. Am. J. Bot. 110, e16167 (2023).

    CAS 

    Google Scholar
     

  • Kline, J. et al. A framework for autonomic computing for in situ imageomics. In 2023 IEEE Int. Conf. on Autonomic Computing and Self-Organizing Systems (ACSOS) 11–16 (IEEE, 2023).

  • Hoyal Cuthill, J. F., Guttenberg, N. & Huertas, B. Male and female contributions to diversity among birdwing butterfly images. Commun. Biol. 7, 774 (2024).


    Google Scholar
     

  • Stoddard, M. C., Kilner, R. M. & Town, C. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nat. Commun. 5, 4117 (2014).

    CAS 

    Google Scholar
     

  • Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).


    Google Scholar
     

  • Marcos, D., Potze, A., Xu, W., Tuia, D. & Akata, Z. Attribute prediction as multiple instance learning. Trans. Mach. Learn. Res. 8, 253156463 (2022).


    Google Scholar
     

  • Crofts, A. L. et al. Linking aerial hyperspectral data to canopy tree biodiversity: an examination of the spectral variation hypothesis. Ecol. Monogr. 94, e1605 (2024).


    Google Scholar
     

  • Wilson, O. J. The 3D pollen project: an open repository of three-dimensional data for outreach, education and research. Rev. Palaeobot. Palynol. 312, 104860 (2023).


    Google Scholar
     

  • Fabian, S. T., Sondhi, Y., Allen, P. E., Theobald, J. C. & Lin, H.-T. Why flying insects gather at artificial light. Nat. Commun. 15, 689 (2024).

    CAS 

    Google Scholar
     

  • Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).


    Google Scholar
     

  • Diniz Filho, J. A. F. et al. Macroecological links between the Linnean, Wallacean, and Darwinian shortfalls. Front. Biogeogr. 15, e59566 (2023).


    Google Scholar
     

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    CAS 

    Google Scholar
     

  • Warnow, T. Computational Phylogenetics: An Introduction to Designing Methods for Phylogeny Estimation (Cambridge Univ. Press, 2017).

  • Mo, Y. K., Hahn, M. W. & Smith, M. L. Applications of machine learning in phylogenetics. Mol. Phylogenet. Evol. 196, 108066 (2024).

    CAS 

    Google Scholar
     

  • Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A. & Tsuboi, M. Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. Front. Ecol. Evol. 9, 642774 (2021).


    Google Scholar
     

  • Younis, S. et al. Taxon and trait recognition from digitized herbarium specimens using deep convolutional neural networks. Bot. Lett. 165, 377–383 (2018).


    Google Scholar
     

  • Weaver, W. N., Ng, J. & Laport, R. G. LeafMachine: using machine learning to automate leaf trait extraction from digitized herbarium specimens. Appl. Plant. Sci. 8, e11367 (2020).


    Google Scholar
     

  • Stupp, D. et al. Co-evolution based machine-learning for predicting functional interactions between human genes. Nat. Commun. 12, 6454 (2021).

    CAS 

    Google Scholar
     

  • Elhamod, M. et al. Discovering novel biological traits from images using phylogeny-guided neural networks. In Proc. 29th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD 2023) 3966–3978 (Association for Computing Machinery, 2023).

  • Meagher, J. P., Damoulas, T., Jones, K. E. & Girolami, M. in Statistical Data Science (ed. Adams, N.) Ch. 7, 111–124 (World Scientific, 2018).

  • Nguyen, T. Q., Ebnesajjad, C., Cole, S. R. & Stuart, E. A. Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects. Ann. Appl. Stat. 11, 225–247 (2017).


    Google Scholar
     

  • Blackburn, D. C. et al. Increasing the impact of vertebrate scientific collections through 3D imaging: the openVertebrate (oVert) thematic collections network. BioScience 74, 169–186 (2024).


    Google Scholar
     

  • Yang, C.-H. et al. Arboretum: a large multimodal dataset enabling AI for biodiversity. Preprint at arXiv https://doi.org/10.48550/arXiv.2406.17720 (2024).

  • Gharaee, Z. et al. BIOSCAN-5M: a multimodal dataset for insect biodiversity. Preprint at arXiv https://doi.org/10.48550/arXiv.2406.12723 (2024).

  • Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).


    Google Scholar
     

  • Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. Defining and evaluating predictions of joint species distribution models. Meth. Ecol. Evol. 12, 394–404 (2021).


    Google Scholar
     

  • Schliep, E. M. et al. Joint species distribution modelling for spatio‐temporal occurrence and ordinal abundance data. Glob. Ecol. Biogeogr. 27, 142–155 (2018).


    Google Scholar
     

  • Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).


    Google Scholar
     

  • Ratnayake, M. N., Dyer, A. G. & Dorin, A. Tracking individual honeybees among wildflower clusters with computer vision-facilitated pollinator monitoring. PLoS ONE 16, e0239504 (2021).

    CAS 

    Google Scholar
     

  • Liu, J. & Wang, X. Plant diseases and pests detection based on deep learning: a review. Plant. Meth. 17, 22 (2021).


    Google Scholar
     

  • Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).


    Google Scholar
     

  • Nawoya, S. et al. Computer vision and deep learning in insects for food and feed production: a review. Comput. Electron. Agric. 216, 108503 (2024).


    Google Scholar
     

  • Folliot, A., Haupert, S., Ducrettet, M., Sèbe, F. & Sueur, J. Using acoustics and artificial intelligence to monitor pollination by insects and tree use by woodpeckers. Sci. Total. Environ. 838, 155883 (2022).

    CAS 

    Google Scholar
     

  • Ornai, A. & Keasar, T. Floral complexity traits as predictors of plant-bee interactions in a Mediterranean pollination web. Plants 9, 1432 (2020).


    Google Scholar
     

  • Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M. & Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Meth. Ecol. Evol. 11, 281–293 (2020).


    Google Scholar
     

  • Sydenham, M. A. K. et al. MetaComNet: a random forest-based framework for making spatial predictions of plant–pollinator interactions. Meth. Ecol. Evol. 13, 500–513 (2022).


    Google Scholar
     

  • Caron, D., Maiorano, L., Thuiller, W. & Pollock, L. J. Addressing the Eltonian shortfall with trait-based interaction models. Ecol. Lett. 25, 889–899 (2022).


    Google Scholar
     

  • Llewelyn, J. et al. Predicting predator–prey interactions in terrestrial endotherms using random forest. Ecography 2023, e06619 (2023).


    Google Scholar
     

  • Kotula, H. J., Peralta, G., Frost, C. M., Todd, J. H. & Tylianakis, J. M. Predicting direct and indirect non-target impacts of biocontrol agents using machine-learning approaches. PLoS ONE 16, e0252448 (2021).

    CAS 

    Google Scholar
     

  • Roslin, T. & Majaneva, S. The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite! Genome 59, 603–628 (2016).

    CAS 

    Google Scholar
     

  • Adhurya, S. & Park, Y.-S. A novel method for predicting ecological interactions with an unsupervised machine learning algorithm. Methods Ecol. Evol. 15, 1247–1260 (2024).


    Google Scholar
     

  • Strydom, T. et al. A roadmap towards predicting species interaction networks (across space and time). Phil. Trans. R. Soc. B 376, 20210063 (2021).


    Google Scholar
     

  • Strydom, T. et al. Food web reconstruction through phylogenetic transfer of low-rank network representation. Meth. Ecol. Evol. 13, 2838–2849 (2022).


    Google Scholar
     

  • Suraci, J. P. et al. Beyond spatial overlap: harnessing new technologies to resolve the complexities of predator–prey interactions. Oikos 2022, e09004 (2022).


    Google Scholar
     

  • Caron, D. et al. Trait-matching models predict pairwise interactions across regions, not food web properties. Glob. Ecol. Biogeogr. 33, e13807 (2024).


    Google Scholar
     

  • Corso, G., Stark, H., Jegelka, S., Jaakkola, T. & Barzilay, R. Graph neural networks. Nat. Rev. Meth. Primer 4, 17 (2024).

    CAS 

    Google Scholar
     

  • Hamilton, W. L. Graph representation learning. In Synthesis Lectures on Artificial Intelligence and Machine Learning (SLAIML) https://doi.org/10.1007/978-3-031-01588-5 (Springer, 2020).

  • Kim, J. et al. Pure transformers are powerful graph learners. In Proc. 36th Int. Conf. on Neural Information Processing Systems (NIPS 2022) article 1060, 14582–14595 (NeurIPS, 2022).

  • Strydom, T. et al. Graph embedding and transfer learning can help predict potential species interaction networks despite data limitations. Meth. Ecol. Evol. 14, 2917–2930 (2023).


    Google Scholar
     

  • Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).


    Google Scholar
     

  • McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).

    CAS 

    Google Scholar
     

  • O’Connor, L. M. J. et al. Vulnerability of terrestrial vertebrate food webs to anthropogenic threats in Europe. Glob. Change Biol. 30, e17253 (2024).


    Google Scholar
     

  • Fricke, E. et al. Collapse of terrestrial mammal food webs since the Late Pleistocene. Science 377, 1008–1011 (2022).

    CAS 

    Google Scholar
     

  • Elliott, M. J. & Fortes, J. A. B. Toward reliable biodiversity information extraction from large language models. In 2024 IEEE 20th Int. Conf. on e-Science (IEEE, 2024).

  • Bledsoe, E. K. et al. Data rescue: saving environmental data from extinction. Proc. R. Soc. B 289, 20220938 (2022).


    Google Scholar
     

  • Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Proc. 34th Int. Conf. on Neural Information Processing Systems (NIPS 2020) article 793, 9459–9474 (NeurIPS, 2020).

  • Berger-Tal, O. et al. Leveraging AI to improve evidence synthesis in conservation. Trends Ecol. Evol. 39, 548–557 (2024).


    Google Scholar
     

  • Ryo, M. et al. Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models. Ecography 44, 199–205 (2021).


    Google Scholar
     

  • Runge, J. et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 10, 2553 (2019).


    Google Scholar
     

  • Camps-Valls, G. et al. Discovering causal relations and equations from data. Phys. Rep. 1044, 1–68 (2023).


    Google Scholar
     

  • Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating scientific knowledge with machine learning for engineering and environmental systems. ACM Comput. Surv. 55, 66 (2022).


    Google Scholar
     

  • Liu, L. et al. Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nat. Commun. 15, 357 (2024).


    Google Scholar
     

  • Hartig, F. et al. Novel community data in ecology-properties and prospects. Trends Ecol. Evol. 39, 280–293 (2024).

    CAS 

    Google Scholar
     

  • Niazi, S. K. & Mariam, Z. Computer-aided drug design and drug discovery: a prospective analysis. Pharmaceuticals 17, 22 (2024).

    CAS 

    Google Scholar
     

  • Guo, K., Yang, Z., Yu, C.-H. & Buehler, M. J. Artificial intelligence and machine learning in design of mechanical materials. Mater. Horiz. 8, 1153–1172 (2021).

    CAS 

    Google Scholar
     

  • Han, Z., Zhang, L., Jiang, Y., Wang, H. & Jiguet, F. Unravelling species co-occurrence in a steppe bird community of Inner Mongolia: insights for the conservation of the endangered Jankowski’s bunting. Divers. Distrib. 26, 843–852 (2020).


    Google Scholar
     

  • Zérah, Y., Valero, S. & Inglada, J. Physics-driven probabilistic deep learning for the inversion of physical models with application to phenological parameter retrieval from satellite times series. IEEE Trans. Geosci. Remote. Sens. 61, 4404723 (2023).


    Google Scholar
     

  • Karpatne, A., Kannan, R. & Kumar, V. (eds) Knowledge Guided Machine Learning: Accelerating Discovery Using Scientific Knowledge and Data: Data Mining and Knowledge Discovery Series (CRC Press, 2023).

  • Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K. & Grover, A. ClimaX: a foundation model for weather and climate. In Proc. 40th Int. Conf. on Machine Learning (ICML 2023) 25904–25938 (PMLR, 2023).

  • Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1412 (2023).

    CAS 

    Google Scholar
     

  • de Bézenac, E., Pajot, A. & Gallinari, P. Deep learning for physical processes: incorporating prior scientific knowledge. J. Stat. Mech. 2019, 124009 (2019).


    Google Scholar
     

  • Rolnick, D. et al. Position: application-driven innovation in machine learning. In Proc. 41st Int. Conf. on Machine Learning article 235, 42707–42718 (PMLR, 2024).

  • Harvey, E., Gounand, I., Ward, C. L. & Altermatt, F. Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. 54, 371–379 (2017).


    Google Scholar
     

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).


    Google Scholar
     

  • Mahecha, M. D. et al. Earth system data cubes unravel global multivariate dynamics. Earth Syst. Dyn. 11, 201–234 (2020).


    Google Scholar
     

  • Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1, 0176 (2017).


    Google Scholar
     

  • Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteor. Soc. 95, 1431–1443 (2014).


    Google Scholar
     

  • Skidmore, A. K. & Pettorelli, N. Agree on biodiversity metrics to track from space: ecologists and space agencies must forge a global monitoring strategy. Nature 523, 403–406 (2015).

    CAS 

    Google Scholar
     

  • Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 7, 1778–1789 (2023).


    Google Scholar
     

  • Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016).


    Google Scholar
     

  • Moreno-Martínez, Á. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote. Sens. Environ. 218, 69–88 (2018).


    Google Scholar
     

  • Yang, H. et al. Global patterns of tree wood density. Glob. Change Biol. 30, e17224 (2024).

    CAS 

    Google Scholar
     

  • Wolf, S. et al. Citizen science plant observations encode global trait patterns. Nat. Ecol. Evol. 6, 1850–1859 (2022).


    Google Scholar
     

  • Gómez-Chova, L., Tuia, D., Moser, G. & Camps-Valls, G. Multimodal classification of remote sensing images: a review and future directions. Proc. IEEE 103, 1560–1584 (2015).


    Google Scholar
     

  • Bachmann, R., Mizrahi, D., Atanov, A. & Zamir, A. MultiMAE: multi-modal multi-task masked autoencoders. Computer Vision—ECCV 2022 17th Eur. Conf. Proc. XXXVII 348–367 (Springer, 2022).

  • Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).


    Google Scholar
     

  • Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).


    Google Scholar
     

  • Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).


    Google Scholar
     

  • Exposito-Alonso, M. et al. Genetic diversity loss in the Anthropocene. Science 377, 1431–1435 (2022).

    CAS 

    Google Scholar
     

  • Schmidt, C., Hoban, S., Hunter, M., Paz-Vinas, I. & Garroway, C. J. Genetic diversity and IUCN Red List status. Conserv. Biol. 37, e14064 (2023).


    Google Scholar
     

  • Yates, M. C., Derry, A. M. & Cristescu, M. E. Environmental RNA: a revolution in ecological resolution? Trends Ecol. Evol. 36, 601–609 (2021).

    CAS 

    Google Scholar
     

  • Cristescu, M. E. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 34, 694–697 (2019).


    Google Scholar
     

  • Hobern, D. BIOSCAN: DNA barcoding to accelerate taxonomy and biogeography for conservation and sustainability. Genome 64, 161–164 (2021).


    Google Scholar
     

  • Li, Z., Cranganore, S. S., Youngblut, N. & Kilbertus, N. Whole genome transformer for gene interaction effects in microbiome habitat specificity. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.05998 (2024).

  • Srivathsan, A. & Meier, R. Scalable, cost-effective, and decentralized DNA barcoding with Oxford nanopore sequencing. Meth. Mol. Biol. 2744, 223–238 (2024).


    Google Scholar
     

  • Meier, R., Hartop, E., Pylatiuk, C. & Srivathsan, A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Phil. Trans. R. Soc. B 379, 20230120 (2024).


    Google Scholar
     

  • Pei, W. et al. Megabarcoding reveals a tale of two very different dark taxa along the same elevational gradient. Preprint at bioRxiv https://doi.org/10.1101/2024.04.29.591578 (2024).

  • Dalla-Torre, H. et al. Nucleotide transformer: building and evaluating robust foundation models for human genomics. Nat. Meth. https://doi.org/10.1038/s41592-024-02523-z (2024).

  • Zhou, Z. et al. DNABERT-S: learning species-aware DNA embedding with genome foundation models. Preprint at arXiv https://doi.org/10.48550/arXiv.2402.08777 (2024).

  • Richard, G. et al. ChatNT: a multimodal conversational agent for DNA, RNA and protein tasks. Preprint at bioRxiv https://doi.org/10.1101/2024.04.30.591835 (2024).

  • Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Meth. 21, 1470–1480 (2024).

    CAS 

    Google Scholar
     

  • Luccioni, S., Jernite, Y. & Strubell, E. Power hungry processing: watts driving the cost of AI deployment? In Proc. 2024 ACM Conf. on Fairness, Accountability, and Transparency (FAccT) 85–99 (Association for Computing Machinery, 2024).



  • Source link

    More From Forest Beat

    Alien spiders in a palm house with the first report of...

    Bell, J. R., Bohan, D. A., Shaw, E. M. & Weyman, G. S. Ballooning dispersal using silk: World fauna, phylogenies, genetics and models....
    Biodiversity
    16
    minutes

    Fungi are among the planet’s most important organisms — yet they’re...

    Fungi are among the most important organisms on Earth. Even though most of the world’s described 157,000 fungal species...
    Biodiversity
    4
    minutes

    Late Quaternary fluctuation in upper range limit of trees shapes endemic...

    Application of multi-source satellite data in mapping upper range limit of treesTo map the spatial distribution of the upper range limit of trees...
    Biodiversity
    18
    minutes

    Multispecies relations shape bird-feeding practices

    While the focus of bird-feeding studies has been either on the effects that bird-feeding has on avian or non-avian populations and communities9,28,29,30 or...
    Biodiversity
    10
    minutes
    spot_imgspot_img