Alien spiders in a palm house with the first report of parthenogenetic Triaeris stenaspis (Araneae: Oonopidae) infected by Wolbachia from new supergroup X


  • Bell, J. R., Bohan, D. A., Shaw, E. M. & Weyman, G. S. Ballooning dispersal using silk: World fauna, phylogenies, genetics and models. Bull. Entom Res. 95 (2), 69–114. https://doi.org/10.1079/BER2004350 (2005).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Szymkowiak, P., Górski, G. & Bajerlein, D. Passive dispersal in arachnids. Biol. Lett. 44 (2), 75–101 (2007).

    MATH 

    Google Scholar
     

  • Nentwig, W. Introduction, establishment rate, pathways and impact of spiders alien to Europe. Biol. Invas. 17 (9), 2757–2778. https://doi.org/10.1007/s10530-015-0912-5 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Gillespie, R. G., Rivera, M. A. J. & Garb, J. E. Sun, surf and spiders: Taxonomy and phylogeography of Hawaiian Araneae. In Proceedings of 17th European Colloquium Arachnology Edinburgh 1979, 41–51 (1998).

  • Patoleta, B. & Żabka, M. Salticidae (Arachnida, Araneae) of Islands off Australia. J. Arachnol. 27, 229–235 (1999).

    MATH 

    Google Scholar
     

  • Żabka, M. & Nentwig, W. The Krakatau Islands (Indonesia) as a model-area for zoogeographical study, a salticidae (Arachnida: Araneae) perspective. Ann. Zool. 52 (3), 465–474 (2002).

    MATH 

    Google Scholar
     

  • Kielhorn, K. H. First records of Spermophora kerinci, Nesticella mogera and Pseudanapis aloha on the European mainland (Araneae: Pholcidae, Nesticidae, Anapidae). Arachnol. Mitt. 37, 31–34. https://doi.org/10.5431/aramit3706 (2009).

    Article 
    MATH 

    Google Scholar
     

  • Nentwig, W. & Kobelt, M. Spiders (Araneae). In Alien Terrestrial Arthropods of Europe (eds Roques, A. et al.) 131–147 (Pensoft Publishers, 2010). https://doi.org/10.3897/biorisk.4.48.

  • Keller, R. P., Geist, J., Jeschke, J. M. & Kühn, I. Invasive species in Europe: Ecology, status, and policy. Environ. Sci. Eur. 23 (1), 23. https://doi.org/10.1186/2190-4715-23-23 (2011).

    Article 

    Google Scholar
     

  • Kobelt, M. & Nentwig, W. Alien spider introductions to Europe supported by global trade. Divers. Distrib. 14, 273–280. https://doi.org/10.1111/j.1472-4642.2007.00426.x (2008).

    Article 

    Google Scholar
     

  • Nedvěd, O. et al. Ecology of Arachnida alien to Europe. BioControl 56, 539–550. https://doi.org/10.1007/s10526-011-9385-3 (2011).

    Article 
    MATH 

    Google Scholar
     

  • Eichler, W. Die Tierewelt Der Gewächshäuser. Academische Verlagsgesellschaft (Geest & Portig K.-G, 1952).

  • Hillyard, P. Coleosoma floridanum banks (Araneae: Theridiidae) and Boeorix manducus Thorell (Opiliones: Assamiidae): Two tropical arachnids in botanical gardens gardens. Newsl. Br. Arachnol Soc. 31, 3–4 (1981).


    Google Scholar
     

  • Koponen, S. A tropical spider Coleosoma floridanum (Araneae, Theridiidae), found in the botanical garden of the University of Turku, Finland. Memo Soc. Fauna Flora Fenn. 66, 106–107 (1990).


    Google Scholar
     

  • Koponen, S. Triaeris stenaspis simon (Araneae, Oonopidae) found in the Botanical Garden of the University of Turku, Finland. Entomol. Fenn. 8, 7 (1997).

    MATH 

    Google Scholar
     

  • Kielhorn, K. H. A glimpse of the tropics: Spiders (Araneae) in the greenhouses of the Botanic Garden Berlin-Dahlem. Arachnol Mitt. 36, 26–34. https://doi.org/10.5431/aramit3605 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Teodorescu, I. & Matei, A. Native and alien arthropods in several greenhouses (Bucharest area). Rom J. Biol.-Zool. 55 (1), 31–42 (2010).

    MATH 

    Google Scholar
     

  • Šestáková, A., Christophoryová, J., Korenko, S. A tropical invader Coleosoma floridanum, spotted for the first time in Slovakia and the Czech Republic (Araneae, Theridiidae). Arachnol. Mitt. 45, 40–44. https://doi.org/10.5431/aramit4509 (2013).

    Article 

    Google Scholar
     

  • Šestáková, A., Černecká, L., Neumann, J. & Reiser, N. First record of the exotic spitting spider Scytodes fusca (Araneae, Scytodidae) in central Europe from Germany and Slovakia. Arachnol. Mitt. 47, 1–6. https://doi.org/10.5431/aramit4701 (2014).

    Article 

    Google Scholar
     

  • Kolicka, M., Dziuba, M. K., Zawierucha, K., Kuczyńska-Kippen, N. & Kotwicki, L. Palm house: Biodiversity hotspot or risk of invasion? Aquatic invertebrates: The special case of Monogononta (Rotifera) under greenhouse conditions. Biologia 70 (1), 94–103. https://doi.org/10.1515/biolog-2015-0012 (2015).

    Article 

    Google Scholar
     

  • Moszyński, A. & Urbański, J. Étude sur la faune des sevres de Poznań (Pologne). Bull. Sci. Fr. Belg. 66 (1), 45–76 (1932).

    MATH 

    Google Scholar
     

  • Urbański, J. Fauna of palm house. Wszechświat 4, 103–109 (1950). In Polish.

    MATH 

    Google Scholar
     

  • Pisarski, B. On the occurence of exotic species of ants in Poland. Fragm Faunist. 7 (11), 1–6 (1957). In Polish.

    MATH 

    Google Scholar
     

  • Kolasa, J. Turbellaria and nemertini of greenhouses in Poznań. Acta Hydrobiol. 15, 227–245 (1973). In Polish.

    MATH 

    Google Scholar
     

  • Legeżyński, P. Oligochaeta aqatica of some greenhouses of Poznań. Bad Fizjogr Pol. Zach Ser. C. 26, 223–229 (1974). In Polish.


    Google Scholar
     

  • Kolicka, M., Kisielewski, J., Nesteruk, T. & Zawierucha, K. Gastrotricha from the Poznań palm house: One new subgenus and three new species of freshwater Chaetonotida (Gastrotricha). Zootaxa 3717, 231–279. https://doi.org/10.11646/zootaxa.3717.2.7 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Wiśniewski, J. & Hirschmann, W. Zwei neue uropodina–arten (Acarina) aus palmenhaus in Polen. Bull. Acad. Pol. Sci. Ser. Sci. Biol. 39, 125–132 (1991).

    MATH 

    Google Scholar
     

  • Wiśniewski, J. & Hirschmann, W. Protogamasellopsis posnaniensis nov. spec. (Acarina: Mesostigmata) aus palmenhaus in Polen. Bull. Acad. Pol. Sci. Ser. Sci. Biol. 39, 189–194 (1991).


    Google Scholar
     

  • Niedbała, W. Contribution to the knowledge of ptyctimous mites (Acari, Oribatida) in the palm house in Poznań. Biol. Lett. 47 (2), 87–92. https://doi.org/10.2478/v10120-009-0022-0 (2010).

    Article 

    Google Scholar
     

  • Niedbała, W. New data about ptyctimous mites (Acari, Oribatida) in Polish palm houses. Turk. J. Zool. 38, 1–5. https://doi.org/10.3906/zoo-1311-28 (2014).

    Article 

    Google Scholar
     

  • Oszust, M., Olszanowski, Z., Przymuszała, M. & Jagiełło, A. Greenhouses: Urban biodiversity hotspot of alien Oribatida (Acari) species. Fragm Faunist. 63 (1), 1–10 (2020).


    Google Scholar
     

  • Zawierucha, K., Szymkowiak, P., Dabert, M. & Harvey, M. S. First record of the schizomid Stenochrus portoricensis (Schizomida: Hubbardiidae) in Poland, with DNA barcode data. Turk. J. Zool. 37, 357–361. https://doi.org/10.3906/zoo-1210-9 (2013).

    Article 

    Google Scholar
     

  • Woźniczko, A. Spiders (Araneae) and harvestmens (Opiliones) of the Poznan Palm House and in the seaside of Poland. MSc Dissertation (Department of Animal Morphology, Adam Mickiewicz University in Poznań, Poland, 1966). In Polish.

  • Dziabaszewski, A. Investigations on great Poland spiders, IV. Bad Fizjogr Pol. Zach Ser. C 30, 75–84 (1978). In Polish.


    Google Scholar
     

  • Dziabaszewski, A. Faunistic remarks about rare species of spiders (Aranei) from Poznań (with a list of 302 recorded species). Bad Fizjogr Pol. Zach Ser. C 38, 6–21 (1989). In Polish.


    Google Scholar
     

  • Korenko, S., Šmerda, J. & Pekár, S. Life-history of the parthenogenetic oonopid spider, Triaeris stenaspis (Araneae: Oonopidae). Eur. J. Entomol. 106, 217–223. https://doi.org/10.14411/eje.2009.028 (2009).

    Article 

    Google Scholar
     

  • Clouse, R. M. First global molecular phylogeny and biogeographical analysis of two arachnid orders (Schizomida and Uropygi) supports a tropical Pangean origin and mid-Cretaceous diversification. J. Biogeogr. 44, 2660–2672. https://doi.org/10.1111/jbi.13076 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Rodriguero, M. S., Lanteri, A. A., Guzmán, N. V., Carús Guedes, J. V. & Confalonieri, V. A. Out of the forest: Past and present range expansion of a parthenogenetic weevil pest, or how to colonize the world successfully. Ecol. Evol. 6 (15), 1–15. https://doi.org/10.1002/ece3.2180 (2016).

    Article 

    Google Scholar
     

  • Monjaraz-Ruedas, R., Francke, O. F. & Prendini, L. World travelers: Parthenogenesis and ecological tolerance enable multiple colonization events by the widespread short-tailed whipscorpion, Stenochrus portoricensis (Schizomida: Hubbardiidae). Insect Syst. Divers. 6 (1), 7. https://doi.org/10.1093/isd/ixab032 (2022).

    Article 

    Google Scholar
     

  • Landmann, F. The Wolbachia endosymbionts. Microbiol. Spectr. 7 (2), BAI-0018-2019. https://doi.org/10.1128/microbiolspec.BAI-0018-2019 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Verhulst, E. C., Pannebakker, B. A. & Geuverink, E. Variation in sex determination mechanisms may constrain parthenogenesis-induction by endosymbionts in haplodiploid systems. Curr. Opin. Insect Sci. 56, 101023. https://doi.org/10.1016/j.cois.2023.101023 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Richardson, K. M. et al. A male-killing Wolbachia endosymbiont is concealed by another endosymbiont and a nuclear suppressor. PLoS Biol. 21 (3), e3001879. https://doi.org/10.1371/journal.pbio.3001879 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Herran, B. et al. The shutting down of the insulin pathway: A developmental window for Wolbachia load and feminization. Sci. Rep. 10, 10551. https://doi.org/10.1038/s41598-020-67428-1 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, H., Zhang, M. & Hochstrasser, M. The biochemistry of cytoplasmic incompatibility caused by endosymbiotic bacteria. Genes 11 (8), 852. https://doi.org/10.3390/genes11080852 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Engl, T. Reproductive manipulation: Wolbachia induce host parthenogenesis using a stolen transformer. Curr. Biol. 34 (11). https://doi.org/10.1016/j.cub.2024.04.076 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fricke, L. C. & Lindsey, A. R. I. Identification of parthenogenesis-inducing effector proteins in Wolbachia. Genome Biol. Evol. 16 (4), evae036. https://doi.org/10.1093/gbe/evae036 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110. https://doi.org/10.1128/AEM.00731-06 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Glowska, E., Dragun-Damian, A., Dabert, M. & Gerth, M. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect. Genet. Evol. 30, 140–146. https://doi.org/10.1016/j.meegid.2014.12.019 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Konecka, E. & Olszanowski, Z. Wolbachia supergroup E found in Hypochthonius rufulus (Acari: Oribatida) in Poland. Infect. Genet. Evol. 91, 104829. https://doi.org/10.1016/j.meegid.2021.104829 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Machado, A. B. Sur l’existence de la parthénogenese dans quelques espéces d’Araignées Ochyrocératides. C R Acad. Sci. Paris. 2, 5056–5059 (1964).


    Google Scholar
     

  • Deeleman-Reinhold, C. D. Dysdera hungarica Kulczynski, a case of parthenogenesis? Actas X Congreso Internacional de Arachnologica Jaca, Spain 1, 25–31 (1986).


    Google Scholar
     

  • Baert, L. & Jocqué, R. Anapistula caecula n. sp., the smallest known female spider (Araneae, Symphytognathidae). J. Afr. Zool. 107, 187–189 (1993).


    Google Scholar
     

  • Comacho, J. P. M. Female-biased sex ratio in spiders caused by parthenogenesis? Hereditas 120, 183–185 (1994).


    Google Scholar
     

  • Levi, H. W. The American orb weavers Hypognatha, Encyosaccus, Xylethrus, Gasteracantha, and Enacrosoma (Araneae, Araneidae). Bull. Mus. Comp. Zool. 155, 89–157 (1996).

    MATH 

    Google Scholar
     

  • Shimojana, M. & Nishihira, M. A new cave-dwelling eyeless spider of the genus Coelotes (Araneae: Amaurobiidae) from Okinawa Island, the Ryukyu. Islands, Japan, with notes on possible parthenogenesis. Acta Arachnol. 49 (1), 29–40. https://doi.org/10.2476/asjaa.49.29 (2000).

    Article 

    Google Scholar
     

  • Saaristo, M. I. Dwarf hunting spiders or Oonopidae (Arachnida, Araneae) of the Seychelles. Insect Syst. Evol. 32 (3), 307–358. https://doi.org/10.1163/187631201X00236 (2001).

    Article 

    Google Scholar
     

  • Lake, D. C. Possible parthenogenesis of the huntsman spider Isopoda insignis (Araneae, Sparasiidae). J. Arachnol. 14 (1), 129 (1986).

    MathSciNet 
    MATH 

    Google Scholar
     

  • WSC. World Spider Catalog. Version 24.5. Natural History Museum Bern. 10.24436/2. http://wsc.nmbe.ch. Accessed 18 Mar 2024.

  • Platnick, N. I., Dupérré, N., Ubick, D. & Fannes, W. Got males?: The enigmatic goblin spider genus Triaeris (Araneae, Oonopidae). Am. Mus. Novit. 3756, 1–36. https://doi.org/10.1206/3756.2 (2012).

    Article 

    Google Scholar
     

  • Rozwałka, R., Rutkowski, T. & Bielak-Bielecki, P. New data on introduced and rare synanthropic spider species (Arachnida: Araneae) in Poland (II). Ann. UMCS. 71, 59–85 (2016).

    MATH 

    Google Scholar
     

  • Korenko, S., Řezáč, M. & Pekár, S. Spiders (Araneae) of the family Oonopidae in the Czech Republic. Arachnol. Mitt. 34, 6–8 (2007). http://www.arages.de/aramit/pdf/Heft_34/AM34_06_08.pdf

    MATH 

    Google Scholar
     

  • Vaněk, O., Hörweg, C. & Milasowszky, N. First records of Spermophora kerinci Huber, 2005 and Triaeris stenaspis Simon, 1892 (Arachnida: araneae: Pholcidae, Oonopidae) in Austria. Biodiversität Und Naturschutz Ostösterreich BCBEA. 6 (2), 99–103 (2022).


    Google Scholar
     

  • Pfliegler, W. P. Records of some rare and interesting spider (Araneae) species from anthropogenic habitats in Debrecen, Hungary. e-Acta Nat. Pannonica 7, 143–156 (2014).


    Google Scholar
     

  • Telfer, M. G. Triaeris stenaspis Simon, 1892 (Oonopidae) at whipsnade butterfly house. Newslett. Brit. Arachnol. Soc. 147, 8–9 (2020).


    Google Scholar
     

  • Bloem, G. J., Noordijk, J. Arachnids (Arachnida: Araneae, Mesostigmata, Pseudoscorpiones) from tropical greenhouses at Rotterdam zoo (the Netherlands), including a pholcid spider new to Europe. Arachnol Mitt. 61, 36–44. https://doi.org/10.30963/aramit6106 (2021).

    Article 

    Google Scholar
     

  • Rozwałka, R., Rutkowski, T. & Bielak-Bielecki, P. New data on introduced and rare synanthropic spider species (Arachnida: Araneae) in Poland. Ann. UMCS. 68 (1), 127–150 (2013).

    MATH 

    Google Scholar
     

  • Miller, F. & Žitňanská, O. Einige bemerkenswerte spinnen aus der Slowakei. Biol. (Bratisl). 31, 81–88 (1976).


    Google Scholar
     

  • Konecka, E. & Olszanowski, Z. A screen of maternally inherited microbial endosymbionts in oribatid mites (Acari: Oribatida). Microbiology 161, 1561–1571. https://doi.org/10.1099/mic.0.000114 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, G. K., Martin, A. R., Roberts, T. K. & Aitken, R. J. Detection of Ehrlichia platys in dogs in Australia. Aust Vet. J. 79, 554–558. https://doi.org/10.1111/j.1751-0813.2001.tb10747.x (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zchori-Fein, E. & Perlman, S. J. Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol. 13, 2009–2016. https://doi.org/10.1111/j.1365-294X.2004.02203.x (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nentwig, W. et al. Spiders of Europe, Version 03.2024. 10.24436/1. https://www.araneae.nmbe.ch. Accessed 18 Mar 2024.

  • Węglarski, K. Poznań Palm House. Guide (Wydawnictwo Poznańskie, 2000). In Polish.

  • Hebert, P. D. N., Penton, E. H., Burns, J. M. & Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. In Proc. Natl. Acad. Sci. U S A 101, 14812–14817. (2004).

  • Simões, P. M., Mialdea, G., Reiss, D., Sagot, M. F. & Charlat, S. Wolbachia detection: An assessment of standard PCR protocols. Mol. Ecol. Resour. 11, 567–572. https://doi.org/10.1111/j.1755-0998.2010.02955.x (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dedeine, F. et al. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc. Natl. Acad. Sci. U S A 98, 6247–6252. https://doi.org/10.1073/pnas.101304298 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 5, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guindon, S. & Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52, 696–704. https://doi.org/10.1080/10635150390235520 (2003).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. https://doi.org/10.1093/molbev/msj030 (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hof, A., Heimann, D. & Römbke, J. Further development for testing the effects of pesticides on wolf spiders. Ecotoxicol. Environ. Saf. 31, 264–270. https://doi.org/10.1006/eesa.1995.1073 (1995).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Amalin, D. M., Pena, J. E., Yu, S. J. & McSorley, R. Selective toxicity of some pesticides to Hibana velox (Araneae: Anyphaenidae), a predator of citrus leafminer. Fla. Entomol. 83, 254–262 (2000).

    CAS 

    Google Scholar
     

  • Wilczek, G. Strategies of cellular reaction towards environmental stress in spiders. (Wydawnictwo Uniwersytetu Śląskiego, 2008). https://sbc.org.pl/Content/13970/komorkowe_strategie_reakcji.pdf

  • Chavan, D. R., Manjunatha, M. K., Ramesh, K. B. & Raut, M. A. Effect of newer insecticides on population of ladybird beetles and spiders in Bt cotton ecosystem. Biosci. Trends. 9 (3), 188–192 (2016).

    MATH 

    Google Scholar
     

  • Boyd, K. M., Hesselberg, T. & Mhairi, E. A. Determination of the functional response in the orb-weaving spider Araneus diadematus (Araneae: Araneidae) according to insecticide type. Ecol. Entomol. 47 (5), 791–800. https://doi.org/10.1111/een.13169 (2022).

    Article 

    Google Scholar
     

  • Wilczek, G., Babczyńska, A., Augustyniak, M. & Migula, P. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient. Environ. Pollut. 132, 453–461. https://doi.org/10.1016/j.envpol.2004.05.011 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babczyńska, A., Wilczek, G. & Migula, P. Effects of dimethoate on spiders from metal pollution gradient. Sci. Total Environ. 370 (2–3), 352–359. https://doi.org/10.1016/j.scitotenv.2006.06.024 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Řezáč, M., Pekar, S. & Stara, J. The negative effect of some selective insecticides of the functional response of a potential biological control agent, the spider Philodromus cespitum. Biocontrol 55, 503–510 (2010).

    MATH 

    Google Scholar
     

  • Růžička, V. The spreading of Ostearius melanopygius (Araneae: Linyphiidae) through central Europe. Eur. J. Entomol. 92, 723–726 (1995).

    MATH 

    Google Scholar
     

  • Šestáková, A., Suvák, M., Krajčovičová, K., Kaňuchová, A. & Christophoryová, J. Arachnids from the greenhouses of the Botanical Garden of the PJ Šafárik University in Košice, Slovakia (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpiones). Arachnol Mitt. 53, 19–28. https://doi.org/10.5431/aramit5304 (2017).

    Article 

    Google Scholar
     

  • Hänggi, A., Bobbitt, I., Kranz-Baltensperger, Y., Bolzern, A. & Gilgado, J. D. Spiders (Araneae) from Swiss hothouses, with records of four species new for Switzerland. Arachnol Mitt. 62, 67–74. https://doi.org/10.30963/aramit6207 (2021).

    Article 

    Google Scholar
     

  • Emerit, M. & Ledoux, J. C. Arrivée en France de Coleosoma floridanum Banks. Revue Arachnologique. 17, 53–55 (2008).


    Google Scholar
     

  • Wilson, R. An American jumper in Leeds, West Yorkshire and an update on non-native taxa recorded in the UK. Newslett. Brit. Arachnol. Soc. 123, 10–15 (2012).

    MATH 

    Google Scholar
     

  • Noordijk, J. Een nieuwe trilspin in Nederland: Spermophora kerinci (Araneae: Pholcidae). Entomol. Ber. 80 (3), 106 (2020).


    Google Scholar
     

  • Rembold, K. et al. Vielfalt bedingt Vielfalt: Wildlebende Arten im Botanischen Garten der Universität Bern. Mitt. Naturforsch. Ges. Bern. 77, 24–68. https://doi.org/10.5169/seals-869443 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Řezáč, M. et al. Spiders newly observed in Czechia in recent years: Overlooked or invasive species? BioInvas. Rec. 10 (3), 555–566. https://doi.org/10.3391/bir.2021.10.3.05 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Thaler-Knoflach, B. Gebietsfremde spinnen in Mitteleuropa. In Aliens. Neobiota und klimawandel: Eine verhängnisvolle affäre. Katalog des landesmuseums Niederösterreich N.F. 485, St. Pölten, Ausstellung, Aliens—Pflanzen und tiere auf wanderschaft, 81–91SB05 (2010).

  • Woźny, M. & Szymkowiak, P. Epigeic spiders of the pastures of northern Wielkopolska. Arachnol. Mitt. 20, 1–25. https://doi.org/10.5431/aramit2001 (2000).

    Article 
    MATH 

    Google Scholar
     

  • Oleszczuk, M. Refugial areas in farmland as habitats for rarely found and threatened species of spiders (Araneae) in Poland. Chrońmy Przyrodę Ojczystą 66 (5), 361–375 (2010). In Polish.


    Google Scholar
     

  • Rozwałka., R. & Stachowicz, J. First record of Ostearius melanopygius (Cambridge, 1879) (Araneae: Linyphiidae) in the eastern part of Poland. Przegląd Zoologiczny 52–54, 159–161 (2010). In Polish.

    MATH 

    Google Scholar
     

  • Pickard-Cambridge, O. On some new and rare spiders from New Zealand, with characters of four new genera. In Proc. Zool. Soc. Lond. 47 (4), 681–703 (1880).


    Google Scholar
     

  • Bielak-Bielecki, P. & Rozwałka, R. Nesticella mogera (Yaginuma, 1972) (Araneae: Nesticidae) in Poland. Zeszyty Naukowe Uniwersytetu Szczecińskiego Acta Biol. 18 (676), 137–141 (2011).


    Google Scholar
     

  • Jung, M. R., Kim, S. T., Kim, H. & Lee, J. H. Species diversity and community structure of ground dwelling spiders in unpolluted and moderately heavy metal-polluted habitats. Water Air Soil. Pollut. 195 (1), 15–22. https://doi.org/10.1007/s11270-008-9723-y (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Moritz, M., Levi, H. W. & Pfüller, R. Achaearanea tabulata, eine für Europa neue Kugelspinne. (Araneae, Theridiidae). Dtsc Entomol. Z. 35 (4–5), 361–367. https://doi.org/10.1002/mmnd.19880350428 (1988).

    Article 

    Google Scholar
     

  • Rozwałka, R. Spiders (Araneae) of the selected synanthropic environments in Lublin City. Fragm Faunist. 49 (1), 57–68 (2006).


    Google Scholar
     

  • Thaler, K. & Knoflach, B. Adventive Spinnentiere in Österreich—mit Ausblicken auf die Nachbarländer (Arachnida ohne Acari). Stapfia 37, 55–76 (1995).


    Google Scholar
     

  • Burger, J. C., Patten, M. A., Prentice, T. R. & Redak, R. A. Evidence for spider community resilience to invasion by non-native spiders. Biol. Conserv. 98, 241–249. https://doi.org/10.1016/S0006-3207(00)00159-2 (2001).

    Article 

    Google Scholar
     

  • Walther, G. R. et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 24 (12), 686–693. https://doi.org/10.1016/j.tree.2009.06.008 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Huang, D., Haack, R. A. & Zhang, R. Does global warming increase establishment rates of invasive alien species? A centurial time series analysis. PLoS ONE. 6 (9), e24733. https://doi.org/10.1371/journal.pone.0024733 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolosi, G., Mammola, S., Verbrugge, L. & Isaia, M. Aliens in caves: the global dimension of biological invasions in subterranean ecosystems. Biol. Rev. 98, 849–867. https://doi.org/10.1111/brv.12933 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kożuchowski, K. & Żmudzka, E. The warming in Poland: The range and the seasonality of changes in air temperature during the second half of the 20th century. Misc Geogr. 10 (1), 103–111. https://doi.org/10.2478/mgrsd-2002-0011 (2002).

    Article 

    Google Scholar
     

  • Kejna, M. & Pospieszyńska, A. Variability in the occurrence of thermal seasons in Poland in 1961–2020. Meteorol. Appl. 30 (4), e2132. https://doi.org/10.1002/met.2132 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rozwałka, R. Mermessus trilobatus (Emerton, 1882) (Araneae: Linyphiidae): A new spider species to the Polish fauna. Przegląd Zoologiczny 52–54, 163–166 (2010). In Polish.


    Google Scholar
     

  • Narimanov, N., Kempel, A., van Kleunen, M. & Entling, M. H. Unexpected sensitivity of the highly invasive spider Mermessus trilobatus to soil disturbance in grasslands. Biol. Invas. 23 (1), 1–6. https://doi.org/10.1007/s10530-020-02348-9 (2021).


    Google Scholar
     

  • Mioduchowska, M. et al. Playing Peekaboo with a master manipulator: Metagenetic detection and phylogenetic analysis of Wolbachia supergroups in freshwater invertebrates. Int. J. Mol. Sci. 24 (11), 9400. https://doi.org/10.3390/ijms24119400 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sharma, A. K. & Som, A. Assigning new supergroups V and W to the Wolbachia diversity. Bioinformation 19 (3), 336–340. https://doi.org/10.6026/97320630019336 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Beliavskaia, A. et al. Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas. Microb. Genom. 9 (7), 001045. https://doi.org/10.1099/mgen.0.001045 (2023).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Moving biodiversity from an afterthought to a key outcome of forest...

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).Article  CAS  ...
    Biodiversity
    27
    minutes

    Fungi are among the planet’s most important organisms — yet they’re...

    Fungi are among the most important organisms on Earth. Even though most of the world’s described 157,000 fungal species...
    Biodiversity
    4
    minutes

    Late Quaternary fluctuation in upper range limit of trees shapes endemic...

    Application of multi-source satellite data in mapping upper range limit of treesTo map the spatial distribution of the upper range limit of trees...
    Biodiversity
    18
    minutes

    Harnessing artificial intelligence to fill global shortfalls in biodiversity knowledge

    COP15: final text of Kunming–Montréal Global Biodiversity Framework. Convention on Biological Diversity https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222 (2022).Caldwell, I. R. et al. Global trends and biases in...
    Biodiversity
    25
    minutes
    spot_imgspot_img