Current approaches and future opportunities for climate-smart protected areas


  • Epps, M. & Chazot, C. (eds) The High Seas Biodiversity Treaty: an introduction to the Agreement under the United Nations Convention on the Law of the Sea on the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction. IUCN https://iucn.org/sites/default/files/2024-01/iucn-bbnj-treaty-policy-brief.pdf (2023).

  • Fitzsimons, J., Stolton, S., Dudley, N. & Mitchell, B. Defining ‘long-term’ for protected areas and other effective area-based conservation measures. Technical Note No. 14. IUCN WCPA https://iucn.org/sites/default/files/2024-09/iucn-wcpa-technical-note-14.pdf (2024).

  • Dudley, N., Rao, M., Zeng, Y. & Watson, J. E. M. Protected and conserved areas are irreplaceable tools for meeting linked targets on biodiversity and climate. Technical Note No. 15. IUCN WCPA https://iucn.org/sites/default/files/2024-09/iucn-wcpa-technical-note-15.pdf (2024).

  • Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).

  • Pörtner, H.-O. et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380, eabl4881 (2023).

    Article 

    Google Scholar
     

  • Hoffmann, S. & Beierkuhnlein, C. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496–1509 (2020).

    Article 

    Google Scholar
     

  • Smith, J. G. et al. A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems. Glob. Change Biol. 29, 5634–5651 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dobrowski, S. Z. et al. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth Environ. 2, 1–11 (2021).

    Article 

    Google Scholar
     

  • Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol. 26, 3251–3267 (2020).

    Article 

    Google Scholar
     

  • Frazão Santos, C. et al. Key components of sustainable climate-smart ocean planning. npj Ocean Sustain. 3, 10 (2024).

    Article 

    Google Scholar
     

  • Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation planning for climate change. Biodivers. Conserv. 27, 1–29 (2018).

    Article 

    Google Scholar
     

  • Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Pressey, R. L. & Bottrill, M. C. Opportunism, threats, and the evolution of systematic conservation planning. Conserv. Biol. 22, 1340–1345 (2008).

    Article 

    Google Scholar
     

  • Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Phil. Trans. R. Soc. B 374, 20180186 (2019).

    Article 

    Google Scholar
     

  • Boyce, D. G. et al. A climate risk index for marine life. Nat. Clim. Change 12, 854–862 (2022).

    Article 

    Google Scholar
     

  • Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).

    Article 

    Google Scholar
     

  • Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).

    Article 

    Google Scholar
     

  • Kunming–Montreal Global Biodiversity Framework agreed at the 15th meeting of the Conference of Parties to the UN Convention on Biological Diversity. CBD/COP/15/L.25. CBD https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222 (2022).

  • Frazão et al. Taking climate-smart governance to the high seas. Science 384, 734–737 (2024).

    Article 

    Google Scholar
     

  • Agreement under the United Nations Convention on the Law of the Sea on the Conservation and Sustainable Use of Marine Biological Diversity of Areas beyond National Jurisdiction. United Nations https://www.un.org/bbnjagreement/en (2023).

  • The World Database on Protected Areas (WDPA). Protected Planet https://www.protectedplanet.net/ (2024).

  • Corelli, V., Boerder, K., Hunter, K. L., Lavoie, I. & Tittensor, D. P. The biodiversity adaptation gap: management actions for marine protected areas in the face of climate change. Conserv. Lett. 17, e13003 (2024).

    Article 

    Google Scholar
     

  • Pressey, R. L. & Bottrill, M. C. Approaches to landscape- and seascape-scale conservation planning: convergence, contrasts and challenges. Oryx 43, 464–475 (2009).

    Article 

    Google Scholar
     

  • Auber, A. et al. A functional vulnerability framework for biodiversity conservation. Nat. Commun. 13, 4774 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27, 198–215 (2021).

    Article 

    Google Scholar
     

  • McLeod, E. et al. Integrating climate and ocean change vulnerability into conservation planning. Coast. Manag. 40, 651–672 (2012).

    Article 

    Google Scholar
     

  • Yang, L. et al. Effects of climate and land-cover change on the conservation status of gibbons. Conserv. Biol. 37, e14045 (2023).

    Article 

    Google Scholar
     

  • Prieto-Torres, D. A. et al. Analyzing individual drivers of global changes promotes inaccurate long-term policies in deforestation hotspots: the case of Gran Chaco. Biol. Conserv. 269, 109536 (2022).

    Article 

    Google Scholar
     

  • Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Change 12, 402–407 (2022).

    Article 

    Google Scholar
     

  • Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: unraveling migratory connectivity. TREE 17, 76–83 (2002).


    Google Scholar
     

  • Keeley, A. T. H. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018).

    Article 

    Google Scholar
     

  • Pendoley, K. L., Schofield, G., Whittock, P. A., Ierodiaconou, D. & Hays, G. C. Protected species use of a coastal marine migratory corridor connecting marine protected areas. Mar. Biol. 161, 1455–1466 (2014).

    Article 

    Google Scholar
     

  • Álvarez-Romero, J. G. et al. Designing connected marine reserves in the face of global warming. Glob. Change Biol. 24, e671–e691 (2018).

    Article 

    Google Scholar
     

  • Webster, M. S. et al. Who should pick the winners of climate change? TREE 32, 167–173 (2017).


    Google Scholar
     

  • Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. NY Acad. Sci. 1162, 79–98 (2009).

    Article 

    Google Scholar
     

  • O’Regan, S. M., Archer, S. K., Friesen, S. K. & Hunter, K. L. A global assessment of climate change adaptation in marine protected area management plans. Front. Mar. Sci. 8, 711085 (2021).

    Article 

    Google Scholar
     

  • Carroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Change Biol. 27, 3395–3414 (2021).

    Article 

    Google Scholar
     

  • Carvalho, S. B., Torres, J., Tarroso, P. & Velo-Antón, G. Genes on the edge: a framework to detect genetic diversity imperiled by climate change. Glob. Change Biol. 25, 4034–4047 (2019).

    Article 

    Google Scholar
     

  • Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).

    Article 

    Google Scholar
     

  • Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).

    Article 

    Google Scholar
     

  • Liczner, A. R., Schuster, R., Richardson, L. L. & Colla, S. R. Identifying conservation priority areas for North American bumble bee species in Canada under current and future climate scenarios. Conserv. Sci. Pract. 5, e12994 (2023).

    Article 

    Google Scholar
     

  • Maxwell, S. L., Reside, A., Trezise, J., McAlpine, C. A. & Watson, J. E. M. Retention and restoration priorities for climate adaptation in a multi-use landscape. Glob. Ecol. Conserv. 18, e00649 (2019).


    Google Scholar
     

  • Velazco, S. J. E., Svenning, J.-C., Ribeiro, B. R. & Laureto, L. M. O. On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. Divers. Distrib. 27, 512–523 (2021).

    Article 

    Google Scholar
     

  • Franklin, J. Species distribution modelling supports the study of past, present and future biogeographies. J. Biogeogr. 50, 1533–1545 (2023).

    Article 

    Google Scholar
     

  • Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).

    Article 

    Google Scholar
     

  • Hendriks, I. E. & Duarte, C. M. Allocation of effort and imbalances in biodiversity research. J. Exp. Mar. Bio. Ecol. 360, 15–20 (2008).

    Article 

    Google Scholar
     

  • The Global Biodiversity Information Facility (GBIF). GBIF https://www.gbif.org (2024).

  • Visalli, M. E. et al. Data-driven approach for highlighting priority areas for protection in marine areas beyond national jurisdiction. Mar. Policy 122, 103927 (2020).

    Article 

    Google Scholar
     

  • Kaschner, K. et al. AquaMaps: predicted range maps for aquatic species. AquaMaps https://www.aquamaps.org/ (2019).

  • Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).

    Article 

    Google Scholar
     

  • Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article 

    Google Scholar
     

  • Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 2557 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mokany, K. et al. Past, present and future refugia for Tasmania’s palaeoendemic flora. J. Biogeogr. 44, 1537–1546 (2017).

    Article 

    Google Scholar
     

  • Stralberg, D. et al. Macrorefugia for North American trees and songbirds: climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 27, 690–703 (2018).

    Article 

    Google Scholar
     

  • Carroll, C. et al. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Change Biol. 23, 4508–4520 (2017).

    Article 

    Google Scholar
     

  • Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. TREE 29, 390–397 (2014).


    Google Scholar
     

  • Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge? Proc. R. Soc. B 287, 20200709 (2020).

    Article 

    Google Scholar
     

  • Graham, V., Baumgartner, J. B., Beaumont, L. J., Esperón-Rodríguez, M. & Grech, A. Prioritizing the protection of climate refugia: designing a climate-ready protected area network. JEPM 62, 2588–2606 (2019).


    Google Scholar
     

  • Serra-Diaz, J. M. et al. Bioclimatic velocity: the pace of species exposure to climate change. Divers. Distrib. 20, 169–180 (2014).

    Article 

    Google Scholar
     

  • Wilmot, E. et al. Characterizing mauka-to-makai connections for aquatic ecosystem conservation on Maui, Hawai‘i. Ecol. Inform. 70, 101704 (2022).

    Article 

    Google Scholar
     

  • Buenafe, K. C. V. et al. A metric-based framework for climate-smart conservation planning. Ecol. Appl. 33, e2852 (2023).

    Article 

    Google Scholar
     

  • Doxa, A. et al. 4D marine conservation networks: combining 3D prioritization of present and future biodiversity with climatic refugia. Glob. Change Biol. 28, 4577–4588 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chollett, I. et al. Planning for resilience: incorporating scenario and model uncertainty and trade-offs when prioritizing management of climate refugia. Glob. Change Biol. 28, 4054–4068 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).

    Article 

    Google Scholar
     

  • Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).

    Article 

    Google Scholar
     

  • Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).

    Article 

    Google Scholar
     

  • Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 7, 1060–1071 (2023).

    Article 

    Google Scholar
     

  • Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    Article 

    Google Scholar
     

  • Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. K. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 1, e0000004 (2022).

    Article 

    Google Scholar
     

  • Iglesias, M. C. et al. Climate- and fire-smart landscape scenarios call for redesigning protection regimes to achieve multiple management goals. J. Environ. Manage. 322, 116045 (2022).

    Article 

    Google Scholar
     

  • Ribeiro, B. R., Sales, L. P. & Loyola, R. Strategies for mammal conservation under climate change in the Amazon. Biodivers. Conserv. 27, 1943–1959 (2018).

    Article 

    Google Scholar
     

  • Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–U111 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).

    Article 

    Google Scholar
     

  • Hu, X., Wei, L., Cheng, Q., Wu, X. & Ni, J. Adjusting the protected areas on the Tibetan Plateau under changing climate. Glob. Ecol. Conserv. 45, e02514 (2023).


    Google Scholar
     

  • Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).

    Article 

    Google Scholar
     

  • Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Triviño, M., Kujala, H., Araújo, M. B. & Cabeza, M. Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landsc. Ecol. 33, 659–673 (2018).

    Article 

    Google Scholar
     

  • Carroll, C., Dunk, J. R. & Moilanen, A. Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob. Change Biol. 16, 891–904 (2010).

    Article 

    Google Scholar
     

  • Han, X., Huettmann, F., Guo, Y., Mi, C. & Wen, L. Conservation prioritization with machine learning predictions for the black-necked crane Grus nigricollis, a flagship species on the Tibetan Plateau for 2070. Reg. Environ. Change 18, 2173–2182 (2018).

    Article 

    Google Scholar
     

  • Parks, S. A., Holsinger, L. M., Abatzoglou, J. T., Littlefield, C. E. & Zeller, K. A. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts. Glob. Change Biol. 29, 2681–2696 (2023).

    Article 
    CAS 

    Google Scholar
     

  • McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. 113, 7195–7200 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol. 24, 5318–5331 (2018).

    Article 

    Google Scholar
     

  • Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lawler, J. J. et al. Planning for climate change through additions to a national protected area network: implications for cost and configuration. Phil. Trans. R. Soc. B 375, 20190117 (2020).

    Article 

    Google Scholar
     

  • Stralberg, D., Carroll, C. & Nielsen, S. E. Toward a climate‐informed North American protected areas network: incorporating climate‐change refugia and corridors in conservation planning. Conserv. Lett. 13, e12712 (2020).

    Article 

    Google Scholar
     

  • Dickson, B. G. et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 33, 239–249 (2019).

    Article 

    Google Scholar
     

  • Alagador, D., Cerdeira, J. O. & Araújo, M. B. Shifting protected areas: scheduling spatial priorities under climate change. J. Appl. Ecol. 51, 703–713 (2014).

    Article 

    Google Scholar
     

  • Lin, Y. et al. Climate-driven connectivity loss impedes species adaptation to warming in the deep ocean. Nat. Clim. Change 15, 315–320 (2025).

    Article 

    Google Scholar
     

  • Richardson, A. J. & Buenafe, K. C. V. A deep dive into climate connectivity. Nat. Clim. Change 15, 248–249 (2025).

    Article 

    Google Scholar
     

  • McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).

    Article 

    Google Scholar
     

  • McClure, M. L., Hansen, A. J. & Inman, R. M. Connecting models to movements: testing connectivity model predictions against empirical migration and dispersal data. Landsc. Ecol. 31, 1419–1432 (2016).

    Article 

    Google Scholar
     

  • Petsas, P., Doxa, A., Almpanidou, V. & Mazaris, A. D. Global patterns of sea surface climate connectivity for marine species. Commun. Earth Environ. 3, 240 (2022).

    Article 

    Google Scholar
     

  • Alagador, D., Cerdeira, J. O. & Araújo, M. B. Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods Ecol. Evol. 7, 853–866 (2016).

    Article 

    Google Scholar
     

  • Beger, M. et al. Demystifying ecological connectivity for actionable spatial conservation planning. TREE 37, 1079–1091 (2022).


    Google Scholar
     

  • Kindlmann, P. & Burel, F. Connectivity measures: a review. Landsc. Ecol. 23, 879–890 (2008).


    Google Scholar
     

  • Burgess, M. G., Becker, S. L., Langendorf, R. E., Fredston, A. & Brooks, C. M. Climate change scenarios in fisheries and aquatic conservation research. ICES J. Mar. Sci. 80, 1163–1178 (2023).

    Article 

    Google Scholar
     

  • Abe, H., Kumagai, N. H. & Yamano, H. Priority coral conservation areas under global warming in the Amami Islands, Southern Japan. Coral Reefs 41, 1637–1650 (2022).

    Article 

    Google Scholar
     

  • Chauvier-Mendes, Y. et al. Transnational conservation to anticipate future plant shifts in Europe. Nat. Ecol. Evol. 8, 454–466 (2024).

    Article 

    Google Scholar
     

  • Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).


    Google Scholar
     

  • Colton, M. A. et al. Coral conservation in a warming world must harness evolutionary adaptation. Nat. Ecol. Evol. 6, 1405–1407 (2022).

    Article 

    Google Scholar
     

  • Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).

    Article 

    Google Scholar
     

  • Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    Article 

    Google Scholar
     

  • Hanson, J. O. et al. Conservation planning for adaptive and neutral evolutionary processes. J. Appl. Ecol. 57, 2159–2169 (2020).

    Article 

    Google Scholar
     

  • Hanson, J. O., Rhodes, J. R., Riginos, C. & Fuller, R. A. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proc. Natl Acad. Sci. USA 114, 12755–12760 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Game, E. T., Lipsett-Moore, G., Saxon, E., Peterson, N. & Sheppard, S. Incorporating climate change adaptation into national conservation assessments. Glob. Change Biol. 17, 3150–3160 (2011).

    Article 

    Google Scholar
     

  • Magris, R. A., Heron, S. F. & Pressey, R. L. Conservation planning for coral reefs accounting for climate warming disturbances. PLoS ONE 10, e0140828 (2015).

    Article 

    Google Scholar
     

  • Makino, A. et al. Spatio-temporal marine conservation planning to support high-latitude coral range expansion under climate change. Divers. Distrib. 20, 859–871 (2014).

    Article 

    Google Scholar
     

  • Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).

    Article 

    Google Scholar
     

  • Kleypas, J. A. et al. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. Glob. Change Biol. 22, 3539–3549 (2016).

    Article 

    Google Scholar
     

  • Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mumby, P. J. et al. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 14, 132–140 (2011).

    Article 

    Google Scholar
     

  • Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B 285, 20172746 (2018).

    Article 

    Google Scholar
     

  • Thomassen, H. A. et al. Mapping evolutionary process: a multi-taxa approach to conservation prioritization. Evol. Appl. 4, 397–413 (2011).

    Article 

    Google Scholar
     

  • Toczydlowski, R. H. et al. Poor data stewardship will hinder global genetic diversity surveillance. Proc. Natl Acad. Sci. 118, e2107934118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, K. A. et al. Conservation research is not happening where it is most needed. PLoS Biol. 14, e1002413 (2016).

    Article 

    Google Scholar
     

  • Jarnevich, C. S., Stohlgren, T. J., Kumar, S., Morisette, J. T. & Holcombe, T. R. Caveats for correlative species distribution modeling. Ecol. Inform. 29, 6–15 (2015).

    Article 

    Google Scholar
     

  • Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Polasky, S., Carpenter, S. R., Folke, C. & Keeler, B. Decision-making under great uncertainty: environmental management in an era of global change. TREE 26, 398–404 (2011).


    Google Scholar
     

  • Schoeman, D. S. et al. Demystifying global climate models for use in the life sciences. TREE 38, 843–858 (2023).


    Google Scholar
     

  • Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L. & García-Ortega, E. Regional climate models: 30 years of dynamical downscaling. Atmos. Res. 235, 104785 (2020).

    Article 

    Google Scholar
     

  • Liao, H., Wang, C. & Song, Z. ENSO phase-locking biases from the CMIP5 to CMIP6 models and a possible explanation. Deep. Sea Res. II 189–190, 104943 (2021).

    Article 

    Google Scholar
     

  • Ekström, M., Grose, M. R. & Whetton, P. H. An appraisal of downscaling methods used in climate change research. Wiley Interdisc. Rev. Clim. 6, 301–319 (2015).

    Article 

    Google Scholar
     

  • Keil, P., Wilson, A. M. & Jetz, W. Uncertainty, priors, autocorrelation and disparate data in downscaling of species distributions. Divers. Distrib. 20, 797–812 (2014).

    Article 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 

    Google Scholar
     

  • Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    Article 

    Google Scholar
     

  • Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).

    Article 

    Google Scholar
     

  • Harris, R. M. B. et al. Climate projections for ecologists. Wiley Interdisc. Rev. Clim. 5, 621–637 (2014).

    Article 

    Google Scholar
     

  • Alagador, D. & Cerdeira, J. O. Revisiting the minimum set cover, the maximal coverage problems and a maximum benefit area selection problem to make climate‐change‐concerned conservation plans effective. Methods Ecol. Evol. 11, 1325–1337 (2020).

    Article 

    Google Scholar
     

  • Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bryndum-Buchholz, A. et al. Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 648, 1–17 (2020).

    Article 

    Google Scholar
     

  • Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Perez-Navarro, M. A. et al. Comparing climatic suitability and niche distances to explain populations responses to extreme climatic events. Ecography 2022, e06263 (2022).

    Article 

    Google Scholar
     

  • Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10, 3891 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Martel, J.-L. et al. CMIP5 and CMIP6 model projection comparison for hydrological impacts over North America. Geophys. Res. Lett. 49, e2022GL098364 (2022).

    Article 

    Google Scholar
     

  • Game, E. T., Watts, M. E., Wooldridge, S. & Possingham, H. P. Planning for persistence in marine reserves: a question of catastrophic importance. Ecol. Appl. 18, 670–680 (2008).

    Article 

    Google Scholar
     

  • Kujala, H., Moilanen, A., Araújo, M. B. & Cabeza, M. Conservation planning with uncertain climate change projections. PLoS ONE 8, e53315 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Giakoumi, S. et al. Advances in systematic conservation planning to meet global biodiversity goals. TREE https://doi.org/10.1016/j.tree.2024.12.002 (2025).

  • de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).


    Google Scholar
     

  • Runting, R. K. et al. Reducing risk in reserve selection using Modern Portfolio Theory: coastal planning under sea-level rise. J. Appl. Ecol. 55, 2193–2203 (2018).

    Article 

    Google Scholar
     

  • Powers, R. P. et al. A conservation assessment of Canada’s boreal forest incorporating alternate climate change scenarios. Remote Sens. Ecol. Conserv. 3, 202–216 (2017).

    Article 

    Google Scholar
     

  • Butt, N. et al. A trait-based framework for assessing the vulnerability of marine species to human impacts. Ecosphere 13, e3919 (2022).

    Article 

    Google Scholar
     

  • Miatta, M., Bates, A. E. & Snelgrove, P. V. R. Incorporating biological traits into conservation strategies. Ann. Rev. Mar. Sci. 13, 421–443 (2021).

    Article 

    Google Scholar
     

  • Boyce, D. G. et al. Operationalizing climate risk in a global warming hotspot. npj Ocean Sustain. 3, 33 (2024).

    Article 

    Google Scholar
     

  • Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Butt, N. & Gallagher, R. Using species traits to guide conservation actions under climate change. Clim. Change 151, 317–332 (2018).

    Article 

    Google Scholar
     

  • Rojas, I. M. et al. A landscape-scale framework to identify refugia from multiple stressors. Conserv. Biol. 36, e13834 (2022).

    Article 

    Google Scholar
     

  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Trisovic, A., Lau, M. K., Pasquier, T. & Crosas, M. A large-scale study on research code quality and execution. Sci. Data 9, 60 (2022).

    Article 

    Google Scholar
     

  • Tulloch, A. I. T. et al. A decision tree for assessing the risks and benefits of publishing biodiversity data. Nat. Ecol. Evol. 2, 1209–1217 (2018).

    Article 

    Google Scholar
     

  • Ramírez, F., Sbragaglia, V., Soacha, K., Coll, M. & Piera, J. Challenges for marine ecological assessments: completeness of findable, accessible, interoperable, and reusable biodiversity data in European Seas. Front. Mar. Sci. 8, 802235 (2022).

    Article 

    Google Scholar
     

  • Daigle, R. M. et al. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol. Evol. 11, 570–579 (2020).

    Article 

    Google Scholar
     

  • Everett, J. D. et al. Weddell Sea Marine Protected Area (WSMPA) Phase 2. Norwegian Polar Institute https://mathmarecol.shinyapps.io/WSMPA2/ (2024).

  • Pınarbaşı, K., Galparsoro, I. & Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Mar. Policy 108, 103658 (2019).

    Article 

    Google Scholar
     

  • Boussarie, G., Kopp, D., Lavialle, G., Mouchet, M. & Morfin, M. Marine spatial planning to solve increasing conflicts at sea: a framework for prioritizing offshore windfarms and marine protected areas. J. Environ. Manage. 339, 117857 (2023).

    Article 

    Google Scholar
     

  • Sinclair, S. P. et al. The use, and usefulness, of spatial conservation prioritizations. Conserv. Lett. 11, e12459 (2018).

    Article 

    Google Scholar
     

  • Balbar, A. C. & Metaxas, A. The current application of ecological connectivity in the design of marine protected areas. Glob. Ecol. Conserv. 17, e00569 (2019).


    Google Scholar
     

  • Samsing, F., Johnsen, I., Treml, E. A. & Dempster, T. Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int. J. Parasitol. 49, 277–286 (2019).

    Article 

    Google Scholar
     

  • Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    Article 

    Google Scholar
     

  • Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. TREE 33, 441–457 (2018).


    Google Scholar
     

  • Maxwell, S. M. et al. Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Mar. Pol. 58, 42–50 (2015).

    Article 

    Google Scholar
     

  • Vigo, M. et al. Dynamic marine spatial planning for conservation and fisheries benefits. Fish Fish. 25, 630–646 (2024).

    Article 

    Google Scholar
     

  • Erisman, B. et al. Fish spawning aggregations: where well-placed management actions can yield big benefits for fisheries and conservation. Fish Fish. 18, 128–144 (2017).

    Article 

    Google Scholar
     

  • Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J. & Laidre, K. L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Modell. 264, 83–97 (2013).

    Article 

    Google Scholar
     

  • Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Change Biol. 25, 2544–2559 (2019).

    Article 

    Google Scholar
     

  • Gill, J. A., Alves, J. A. & Gunnarsson, T. G. Mechanisms driving phenological and range change in migratory species. Phil. Trans. R. Soc. B 374, 20180047 (2019).

    Article 

    Google Scholar
     

  • Robinson, R. A. et al. Travelling through a warming world: climate change and migratory species. Endanger. Species Res. 7, 87–99 (2009).

    Article 

    Google Scholar
     

  • Meek, M. H. et al. Understanding local adaptation to prepare populations for climate change. BioScience 73, 36–47 (2023).

    Article 

    Google Scholar
     

  • Gilbert, S. L. et al. Conservation triage at the trailing edge of climate envelopes. Conserv. Biol. 34, 289–292 (2020).

    Article 

    Google Scholar
     

  • Schoepf, V. et al. Corals at the edge of environmental limits: a new conceptual framework to re-define marginal and extreme coral communities. Sci. Total. Environ. 884, 163688 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Nielsen, E. S. et al. Molecular ecology meets systematic conservation planning. TREE 38, 143–155 (2023).


    Google Scholar
     

  • Schwalm, D. et al. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Glob. Change Biol. 22, 1572–1584 (2016).

    Article 

    Google Scholar
     

  • Chardon, N. I., Pironon, S., Peterson, M. L. & Doak, D. F. Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide-spread plant species. Ecography 43, 60–74 (2020).

    Article 

    Google Scholar
     

  • Theodoridis, S., Patsiou, T. S., Randin, C. & Conti, E. Forecasting range shifts of a cold-adapted species under climate change: are genomic and ecological diversity within species crucial for future resilience? Ecography 41, 1357–1369 (2018).

    Article 

    Google Scholar
     

  • Thomassen, H. A. et al. Modeling environmentally associated morphological and genetic variation in a rainforest bird, and its application to conservation prioritization. Evol. Appl. 3, 1–16 (2010).

    Article 

    Google Scholar
     

  • McClanahan, T. R. et al. Diversification of refugia types needed to secure the future of coral reefs subject to climate change. Cons. Biol. 38, e14108 (2024).

    Article 

    Google Scholar
     

  • Hällfors, M. H. et al. Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecol. Appl. 26, 1154–1169 (2016).

    Article 

    Google Scholar
     

  • Duncanson, L. et al. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 14, 2908 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dabalà, A. et al. Priority areas to protect mangroves and maximise ecosystem services. Nat. Commun. 14, 5863 (2023).

    Article 

    Google Scholar
     

  • Neugarten, R. A. et al. Mapping the planet’s critical areas for biodiversity and nature’s contributions to people. Nat. Commun. 15, 261 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).

    Article 

    Google Scholar
     

  • Sonntag, S., Pongratz, J., Reick, C. H. & Schmidt, H. Reforestation in a high-CO2 world — higher mitigation potential than expected, lower adaptation potential than hoped for. Geophys. Res. Lett. 43, 6546–6553 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Abarca, H. et al. Spatial prioritisation of management zones in protected areas for the integration of multiple objectives. Biodivers. Conserv. 31, 1197–1215 (2022).

    Article 

    Google Scholar
     

  • Schupp, M. F. et al. Toward a common understanding of ocean multi-use. Front. Mar. Sci. 6, 165 (2019).

    Article 

    Google Scholar
     

  • Pinsky, M. L., Rogers, L. A., Morley, J. W. & Frölicher, T. L. Ocean planning for species on the move provides substantial benefits and requires few trade-offs. Sci. Adv. 6, eabb8428 (2020).

    Article 

    Google Scholar
     

  • Buotte, P. C., Law, B. E., Ripple, W. J. & Berner, L. T. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 30, e02039 (2020).

    Article 

    Google Scholar
     

  • Reside, A. E., VanDerWal, J. & Moran, C. Trade-offs in carbon storage and biodiversity conservation under climate change reveal risk to endemic species. Biol. Conserv. 207, 9–16 (2017).

    Article 

    Google Scholar
     

  • Howarth, C. & Robinson, E. J. Z. Effective climate action must integrate climate adaptation and mitigation. Nat. Clim. Change 14, 300–301 (2024).

    Article 

    Google Scholar
     

  • Lawler, J., Watson, J. & Game, E. Conservation in the face of climate change: recent developments. F1000Res https://doi.org/10.12688/f1000research.6490.1 (2015).

  • Meehan, M. C., Ban, N. C., Devillers, R., Singh, G. G. & Claudet, J. How far have we come? A review of MPA network performance indicators in reaching qualitative elements of Aichi Target 11. Conserv. Lett. 13, e12746 (2020).

    Article 

    Google Scholar
     

  • Morrison, T. H. Evolving polycentric governance of the Great Barrier Reef. Proc. Natl Acad. Sci. USA 114, E3013–E3021 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ban, N. C. et al. Systematic conservation planning: a better recipe for managing the high seas for biodiversity conservation and sustainable use. Conserv. Lett. 7, 41–54 (2014).

    Article 

    Google Scholar
     

  • Metaxas, A., Lacharité, M. & de Mendonça, S. N. Hydrodynamic connectivity of habitats of deep-water corals in Corsair Canyon, northwest Atlantic: a case for cross-boundary conservation. Front. Mar. Sci. 6, 554 (2019).

    Article 

    Google Scholar
     

  • Arafeh-Dalmau, N. et al. Integrating climate adaptation and transboundary management: guidelines for designing climate-smart marine protected areas. One Earth 6, 1523–1541 (2023).

    Article 

    Google Scholar
     

  • Boothroyd, A., Adams, V., Alexander, K. & Hill, N. Benefits and risks of incremental protected area planning in the Southern Ocean. Nat. Sustain. 6, 696–705 (2023).

    Article 

    Google Scholar
     

  • Pulp Mills on the River Uruguay (Argentina v. Uruguay). International Court of Justice https://www.icj-cij.org/case/135 (2010).

  • Harris, J. L., Estradivari, E., Fox, H. E., McCarthy, O. S. & Ahmadia, G. N. Planning for the future: incorporating global and local data to prioritize coral reef conservation. Aquat. Conserv. 27, 65–77 (2017).

    Article 

    Google Scholar
     

  • Adams, V. M. et al. Scheduling incremental actions to build a comprehensive national protected area network for Papua New Guinea. Conserv. Sci. Pract. 3, e354 (2021).

    Article 

    Google Scholar
     

  • Gaymer, C. F. et al. Merging top-down and bottom-up approaches in marine protected areas planning: experiences from around the globe. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 128–144 (2014).

    Article 

    Google Scholar
     

  • Li, B. V. & Pimm, S. L. How China expanded its protected areas to conserve biodiversity. Curr. Biol. 30, R1334–R1340 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lagabrielle, E., Lombard, A. T., Harris, J. M. & Livingstone, T.-C. Multi-scale multi-level marine spatial planning: a novel methodological approach applied in South Africa. PLoS ONE 13, e0192582 (2018).

    Article 

    Google Scholar
     

  • Pressey, R. L., Mills, M., Weeks, R. & Day, J. C. The plan of the day: managing the dynamic transition from regional conservation designs to local conservation actions. Biol. Conserv. 166, 155–169 (2013).

    Article 

    Google Scholar
     

  • Kadykalo, A. N., Cooke, S. J. & Young, N. The role of western-based scientific, Indigenous and local knowledge in wildlife management and conservation. People Nat. 3, 610–626 (2021).

    Article 

    Google Scholar
     

  • Cámara-Leret, R. & Dennehy, Z. Information gaps in indigenous and local knowledge for science-policy assessments. Nat. Sustain. 2, 736–741 (2019).

    Article 

    Google Scholar
     

  • Chaplin-Kramer, R. et al. Transformation for inclusive conservation: evidence on values, decisions, and impacts in protected areas. Curr. Opin. Environ. Sustain. 64, 101347 (2023).

    Article 

    Google Scholar
     

  • Lynch, A. J. et al. Managing for RADical ecosystem change: applying the resist–accept–direct (RAD) framework. Front. Ecol. Environ. 19, 461–469 (2021).

    Article 

    Google Scholar
     

  • Ward, N. K. et al. Reimagining large river management using the resist–accept–direct (RAD) framework in the Upper Mississippi River. Ecol. Process. 12, 48 (2023).

    Article 

    Google Scholar
     

  • Handler, S. D., Ledee, O. E., Hoving, C. L., Zuckerberg, B. & Swanston, C. W. A menu of climate change adaptation actions for terrestrial wildlife management. Wildl. Soc. Bull. 46, e1331 (2022).

    Article 

    Google Scholar
     

  • Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Article 

    Google Scholar
     

  • Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdisc. Rev. Clim. 10, e551 (2019).

    Article 

    Google Scholar
     

  • Muhling, B. A. et al. Predictability of species distributions deteriorates under novel environmental conditions in the California Current System. Front. Mar. Sci. 7, 589 (2020).

    Article 

    Google Scholar
     

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 

    Google Scholar
     

  • Patrício, A. R., Hawkes, L. A., Monsinjon, J. R., Godley, B. J. & Fuentes, M. M. P. B. Climate change and marine turtles: recent advances and future directions. Endanger. Species Res. 44, 363–395 (2021).

    Article 

    Google Scholar
     

  • Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. https://doi.org/10.1029/2011GL050087 (2012).

  • García-Roselló, E., González-Dacosta, J. & Lobo, J. M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 283, 110118 (2023).

    Article 

    Google Scholar
     

  • Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).


    Google Scholar
     

  • Tulloch, V. J. D. et al. Minimizing cross-realm threats from land-use change: a national-scale conservation framework connecting land, freshwater and marine systems. Biol. Conserv. 254, 108954 (2021).

    Article 

    Google Scholar
     

  • Makino, A. et al. The effect of applying alternate IPCC climate scenarios to marine reserve design for range changing species. Conserv. Lett. 8, 320–328 (2015).

    Article 

    Google Scholar
     

  • Rose, N.-A. & Burton, P. J. Using bioclimatic envelopes to identify temporal corridors in support of conservation planning in a changing climate. For. Ecol. Manag. 258, S64–S74 (2009).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    The global determinants of climate niche breadth in birds

    We begin our analyses by leveraging the highest quality breeding range maps available for birds, inferred with state-of-the-art species distribution models and powered...
    Biodiversity
    18
    minutes

    Allowing forests to regrow and regenerate is a great way to...

    Queensland is widely known as the land clearing capital of Australia. But what’s not so well known is many...
    Biodiversity
    4
    minutes

    ‘De-extinction’ of dire wolves promotes false hope: technology can’t undo extinction

    Over the past week, the media have been inundated with news of the “de-extinction” of the dire wolf (Aenocyon...
    Biodiversity
    3
    minutes

    NDVI and vegetation volume as predictors of urban bird diversity

    UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity...
    Biodiversity
    10
    minutes
    spot_imgspot_img