Epps, M. & Chazot, C. (eds) The High Seas Biodiversity Treaty: an introduction to the Agreement under the United Nations Convention on the Law of the Sea on the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction. IUCN https://iucn.org/sites/default/files/2024-01/iucn-bbnj-treaty-policy-brief.pdf (2023).
Fitzsimons, J., Stolton, S., Dudley, N. & Mitchell, B. Defining ‘long-term’ for protected areas and other effective area-based conservation measures. Technical Note No. 14. IUCN WCPA https://iucn.org/sites/default/files/2024-09/iucn-wcpa-technical-note-14.pdf (2024).
Dudley, N., Rao, M., Zeng, Y. & Watson, J. E. M. Protected and conserved areas are irreplaceable tools for meeting linked targets on biodiversity and climate. Technical Note No. 15. IUCN WCPA https://iucn.org/sites/default/files/2024-09/iucn-wcpa-technical-note-15.pdf (2024).
Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).
Pörtner, H.-O. et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380, eabl4881 (2023).
Hoffmann, S. & Beierkuhnlein, C. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496–1509 (2020).
Smith, J. G. et al. A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems. Glob. Change Biol. 29, 5634–5651 (2023).
Dobrowski, S. Z. et al. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth Environ. 2, 1–11 (2021).
Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol. 26, 3251–3267 (2020).
Frazão Santos, C. et al. Key components of sustainable climate-smart ocean planning. npj Ocean Sustain. 3, 10 (2024).
Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation planning for climate change. Biodivers. Conserv. 27, 1–29 (2018).
Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).
Pressey, R. L. & Bottrill, M. C. Opportunism, threats, and the evolution of systematic conservation planning. Conserv. Biol. 22, 1340–1345 (2008).
Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Phil. Trans. R. Soc. B 374, 20180186 (2019).
Boyce, D. G. et al. A climate risk index for marine life. Nat. Clim. Change 12, 854–862 (2022).
Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).
Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).
Kunming–Montreal Global Biodiversity Framework agreed at the 15th meeting of the Conference of Parties to the UN Convention on Biological Diversity. CBD/COP/15/L.25. CBD https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222 (2022).
Frazão et al. Taking climate-smart governance to the high seas. Science 384, 734–737 (2024).
Agreement under the United Nations Convention on the Law of the Sea on the Conservation and Sustainable Use of Marine Biological Diversity of Areas beyond National Jurisdiction. United Nations https://www.un.org/bbnjagreement/en (2023).
The World Database on Protected Areas (WDPA). Protected Planet https://www.protectedplanet.net/ (2024).
Corelli, V., Boerder, K., Hunter, K. L., Lavoie, I. & Tittensor, D. P. The biodiversity adaptation gap: management actions for marine protected areas in the face of climate change. Conserv. Lett. 17, e13003 (2024).
Pressey, R. L. & Bottrill, M. C. Approaches to landscape- and seascape-scale conservation planning: convergence, contrasts and challenges. Oryx 43, 464–475 (2009).
Auber, A. et al. A functional vulnerability framework for biodiversity conservation. Nat. Commun. 13, 4774 (2022).
Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27, 198–215 (2021).
McLeod, E. et al. Integrating climate and ocean change vulnerability into conservation planning. Coast. Manag. 40, 651–672 (2012).
Yang, L. et al. Effects of climate and land-cover change on the conservation status of gibbons. Conserv. Biol. 37, e14045 (2023).
Prieto-Torres, D. A. et al. Analyzing individual drivers of global changes promotes inaccurate long-term policies in deforestation hotspots: the case of Gran Chaco. Biol. Conserv. 269, 109536 (2022).
Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Change 12, 402–407 (2022).
Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: unraveling migratory connectivity. TREE 17, 76–83 (2002).
Keeley, A. T. H. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018).
Pendoley, K. L., Schofield, G., Whittock, P. A., Ierodiaconou, D. & Hays, G. C. Protected species use of a coastal marine migratory corridor connecting marine protected areas. Mar. Biol. 161, 1455–1466 (2014).
Álvarez-Romero, J. G. et al. Designing connected marine reserves in the face of global warming. Glob. Change Biol. 24, e671–e691 (2018).
Webster, M. S. et al. Who should pick the winners of climate change? TREE 32, 167–173 (2017).
Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. NY Acad. Sci. 1162, 79–98 (2009).
O’Regan, S. M., Archer, S. K., Friesen, S. K. & Hunter, K. L. A global assessment of climate change adaptation in marine protected area management plans. Front. Mar. Sci. 8, 711085 (2021).
Carroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Change Biol. 27, 3395–3414 (2021).
Carvalho, S. B., Torres, J., Tarroso, P. & Velo-Antón, G. Genes on the edge: a framework to detect genetic diversity imperiled by climate change. Glob. Change Biol. 25, 4034–4047 (2019).
Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).
Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).
Liczner, A. R., Schuster, R., Richardson, L. L. & Colla, S. R. Identifying conservation priority areas for North American bumble bee species in Canada under current and future climate scenarios. Conserv. Sci. Pract. 5, e12994 (2023).
Maxwell, S. L., Reside, A., Trezise, J., McAlpine, C. A. & Watson, J. E. M. Retention and restoration priorities for climate adaptation in a multi-use landscape. Glob. Ecol. Conserv. 18, e00649 (2019).
Velazco, S. J. E., Svenning, J.-C., Ribeiro, B. R. & Laureto, L. M. O. On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. Divers. Distrib. 27, 512–523 (2021).
Franklin, J. Species distribution modelling supports the study of past, present and future biogeographies. J. Biogeogr. 50, 1533–1545 (2023).
Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).
Hendriks, I. E. & Duarte, C. M. Allocation of effort and imbalances in biodiversity research. J. Exp. Mar. Bio. Ecol. 360, 15–20 (2008).
The Global Biodiversity Information Facility (GBIF). GBIF https://www.gbif.org (2024).
Visalli, M. E. et al. Data-driven approach for highlighting priority areas for protection in marine areas beyond national jurisdiction. Mar. Policy 122, 103927 (2020).
Kaschner, K. et al. AquaMaps: predicted range maps for aquatic species. AquaMaps https://www.aquamaps.org/ (2019).
Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).
Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).
Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 2557 (2020).
Mokany, K. et al. Past, present and future refugia for Tasmania’s palaeoendemic flora. J. Biogeogr. 44, 1537–1546 (2017).
Stralberg, D. et al. Macrorefugia for North American trees and songbirds: climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 27, 690–703 (2018).
Carroll, C. et al. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Change Biol. 23, 4508–4520 (2017).
Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. TREE 29, 390–397 (2014).
Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge? Proc. R. Soc. B 287, 20200709 (2020).
Graham, V., Baumgartner, J. B., Beaumont, L. J., Esperón-Rodríguez, M. & Grech, A. Prioritizing the protection of climate refugia: designing a climate-ready protected area network. JEPM 62, 2588–2606 (2019).
Serra-Diaz, J. M. et al. Bioclimatic velocity: the pace of species exposure to climate change. Divers. Distrib. 20, 169–180 (2014).
Wilmot, E. et al. Characterizing mauka-to-makai connections for aquatic ecosystem conservation on Maui, Hawai‘i. Ecol. Inform. 70, 101704 (2022).
Buenafe, K. C. V. et al. A metric-based framework for climate-smart conservation planning. Ecol. Appl. 33, e2852 (2023).
Doxa, A. et al. 4D marine conservation networks: combining 3D prioritization of present and future biodiversity with climatic refugia. Glob. Change Biol. 28, 4577–4588 (2022).
Chollett, I. et al. Planning for resilience: incorporating scenario and model uncertainty and trade-offs when prioritizing management of climate refugia. Glob. Change Biol. 28, 4054–4068 (2022).
Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).
Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).
Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).
Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 7, 1060–1071 (2023).
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. K. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 1, e0000004 (2022).
Iglesias, M. C. et al. Climate- and fire-smart landscape scenarios call for redesigning protection regimes to achieve multiple management goals. J. Environ. Manage. 322, 116045 (2022).
Ribeiro, B. R., Sales, L. P. & Loyola, R. Strategies for mammal conservation under climate change in the Amazon. Biodivers. Conserv. 27, 1943–1959 (2018).
Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–U111 (2009).
Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
Hu, X., Wei, L., Cheng, Q., Wu, X. & Ni, J. Adjusting the protected areas on the Tibetan Plateau under changing climate. Glob. Ecol. Conserv. 45, e02514 (2023).
Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).
Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).
Triviño, M., Kujala, H., Araújo, M. B. & Cabeza, M. Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landsc. Ecol. 33, 659–673 (2018).
Carroll, C., Dunk, J. R. & Moilanen, A. Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob. Change Biol. 16, 891–904 (2010).
Han, X., Huettmann, F., Guo, Y., Mi, C. & Wen, L. Conservation prioritization with machine learning predictions for the black-necked crane Grus nigricollis, a flagship species on the Tibetan Plateau for 2070. Reg. Environ. Change 18, 2173–2182 (2018).
Parks, S. A., Holsinger, L. M., Abatzoglou, J. T., Littlefield, C. E. & Zeller, K. A. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts. Glob. Change Biol. 29, 2681–2696 (2023).
McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. 113, 7195–7200 (2016).
Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol. 24, 5318–5331 (2018).
Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).
Lawler, J. J. et al. Planning for climate change through additions to a national protected area network: implications for cost and configuration. Phil. Trans. R. Soc. B 375, 20190117 (2020).
Stralberg, D., Carroll, C. & Nielsen, S. E. Toward a climate‐informed North American protected areas network: incorporating climate‐change refugia and corridors in conservation planning. Conserv. Lett. 13, e12712 (2020).
Dickson, B. G. et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 33, 239–249 (2019).
Alagador, D., Cerdeira, J. O. & Araújo, M. B. Shifting protected areas: scheduling spatial priorities under climate change. J. Appl. Ecol. 51, 703–713 (2014).
Lin, Y. et al. Climate-driven connectivity loss impedes species adaptation to warming in the deep ocean. Nat. Clim. Change 15, 315–320 (2025).
Richardson, A. J. & Buenafe, K. C. V. A deep dive into climate connectivity. Nat. Clim. Change 15, 248–249 (2025).
McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).
McClure, M. L., Hansen, A. J. & Inman, R. M. Connecting models to movements: testing connectivity model predictions against empirical migration and dispersal data. Landsc. Ecol. 31, 1419–1432 (2016).
Petsas, P., Doxa, A., Almpanidou, V. & Mazaris, A. D. Global patterns of sea surface climate connectivity for marine species. Commun. Earth Environ. 3, 240 (2022).
Alagador, D., Cerdeira, J. O. & Araújo, M. B. Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods Ecol. Evol. 7, 853–866 (2016).
Beger, M. et al. Demystifying ecological connectivity for actionable spatial conservation planning. TREE 37, 1079–1091 (2022).
Kindlmann, P. & Burel, F. Connectivity measures: a review. Landsc. Ecol. 23, 879–890 (2008).
Burgess, M. G., Becker, S. L., Langendorf, R. E., Fredston, A. & Brooks, C. M. Climate change scenarios in fisheries and aquatic conservation research. ICES J. Mar. Sci. 80, 1163–1178 (2023).
Abe, H., Kumagai, N. H. & Yamano, H. Priority coral conservation areas under global warming in the Amami Islands, Southern Japan. Coral Reefs 41, 1637–1650 (2022).
Chauvier-Mendes, Y. et al. Transnational conservation to anticipate future plant shifts in Europe. Nat. Ecol. Evol. 8, 454–466 (2024).
Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).
Colton, M. A. et al. Coral conservation in a warming world must harness evolutionary adaptation. Nat. Ecol. Evol. 6, 1405–1407 (2022).
Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).
Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).
Hanson, J. O. et al. Conservation planning for adaptive and neutral evolutionary processes. J. Appl. Ecol. 57, 2159–2169 (2020).
Hanson, J. O., Rhodes, J. R., Riginos, C. & Fuller, R. A. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proc. Natl Acad. Sci. USA 114, 12755–12760 (2017).
Game, E. T., Lipsett-Moore, G., Saxon, E., Peterson, N. & Sheppard, S. Incorporating climate change adaptation into national conservation assessments. Glob. Change Biol. 17, 3150–3160 (2011).
Magris, R. A., Heron, S. F. & Pressey, R. L. Conservation planning for coral reefs accounting for climate warming disturbances. PLoS ONE 10, e0140828 (2015).
Makino, A. et al. Spatio-temporal marine conservation planning to support high-latitude coral range expansion under climate change. Divers. Distrib. 20, 859–871 (2014).
Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).
Kleypas, J. A. et al. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. Glob. Change Biol. 22, 3539–3549 (2016).
Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).
Mumby, P. J. et al. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 14, 132–140 (2011).
Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B 285, 20172746 (2018).
Thomassen, H. A. et al. Mapping evolutionary process: a multi-taxa approach to conservation prioritization. Evol. Appl. 4, 397–413 (2011).
Toczydlowski, R. H. et al. Poor data stewardship will hinder global genetic diversity surveillance. Proc. Natl Acad. Sci. 118, e2107934118 (2021).
Wilson, K. A. et al. Conservation research is not happening where it is most needed. PLoS Biol. 14, e1002413 (2016).
Jarnevich, C. S., Stohlgren, T. J., Kumar, S., Morisette, J. T. & Holcombe, T. R. Caveats for correlative species distribution modeling. Ecol. Inform. 29, 6–15 (2015).
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).
Polasky, S., Carpenter, S. R., Folke, C. & Keeler, B. Decision-making under great uncertainty: environmental management in an era of global change. TREE 26, 398–404 (2011).
Schoeman, D. S. et al. Demystifying global climate models for use in the life sciences. TREE 38, 843–858 (2023).
Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L. & García-Ortega, E. Regional climate models: 30 years of dynamical downscaling. Atmos. Res. 235, 104785 (2020).
Liao, H., Wang, C. & Song, Z. ENSO phase-locking biases from the CMIP5 to CMIP6 models and a possible explanation. Deep. Sea Res. II 189–190, 104943 (2021).
Ekström, M., Grose, M. R. & Whetton, P. H. An appraisal of downscaling methods used in climate change research. Wiley Interdisc. Rev. Clim. 6, 301–319 (2015).
Keil, P., Wilson, A. M. & Jetz, W. Uncertainty, priors, autocorrelation and disparate data in downscaling of species distributions. Divers. Distrib. 20, 797–812 (2014).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).
Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).
Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
Harris, R. M. B. et al. Climate projections for ecologists. Wiley Interdisc. Rev. Clim. 5, 621–637 (2014).
Alagador, D. & Cerdeira, J. O. Revisiting the minimum set cover, the maximal coverage problems and a maximum benefit area selection problem to make climate‐change‐concerned conservation plans effective. Methods Ecol. Evol. 11, 1325–1337 (2020).
Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).
Bryndum-Buchholz, A. et al. Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 648, 1–17 (2020).
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
Perez-Navarro, M. A. et al. Comparing climatic suitability and niche distances to explain populations responses to extreme climatic events. Ecography 2022, e06263 (2022).
Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10, 3891 (2020).
Martel, J.-L. et al. CMIP5 and CMIP6 model projection comparison for hydrological impacts over North America. Geophys. Res. Lett. 49, e2022GL098364 (2022).
Game, E. T., Watts, M. E., Wooldridge, S. & Possingham, H. P. Planning for persistence in marine reserves: a question of catastrophic importance. Ecol. Appl. 18, 670–680 (2008).
Kujala, H., Moilanen, A., Araújo, M. B. & Cabeza, M. Conservation planning with uncertain climate change projections. PLoS ONE 8, e53315 (2013).
Giakoumi, S. et al. Advances in systematic conservation planning to meet global biodiversity goals. TREE https://doi.org/10.1016/j.tree.2024.12.002 (2025).
de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).
Runting, R. K. et al. Reducing risk in reserve selection using Modern Portfolio Theory: coastal planning under sea-level rise. J. Appl. Ecol. 55, 2193–2203 (2018).
Powers, R. P. et al. A conservation assessment of Canada’s boreal forest incorporating alternate climate change scenarios. Remote Sens. Ecol. Conserv. 3, 202–216 (2017).
Butt, N. et al. A trait-based framework for assessing the vulnerability of marine species to human impacts. Ecosphere 13, e3919 (2022).
Miatta, M., Bates, A. E. & Snelgrove, P. V. R. Incorporating biological traits into conservation strategies. Ann. Rev. Mar. Sci. 13, 421–443 (2021).
Boyce, D. G. et al. Operationalizing climate risk in a global warming hotspot. npj Ocean Sustain. 3, 33 (2024).
Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).
Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).
Butt, N. & Gallagher, R. Using species traits to guide conservation actions under climate change. Clim. Change 151, 317–332 (2018).
Rojas, I. M. et al. A landscape-scale framework to identify refugia from multiple stressors. Conserv. Biol. 36, e13834 (2022).
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
Trisovic, A., Lau, M. K., Pasquier, T. & Crosas, M. A large-scale study on research code quality and execution. Sci. Data 9, 60 (2022).
Tulloch, A. I. T. et al. A decision tree for assessing the risks and benefits of publishing biodiversity data. Nat. Ecol. Evol. 2, 1209–1217 (2018).
Ramírez, F., Sbragaglia, V., Soacha, K., Coll, M. & Piera, J. Challenges for marine ecological assessments: completeness of findable, accessible, interoperable, and reusable biodiversity data in European Seas. Front. Mar. Sci. 8, 802235 (2022).
Daigle, R. M. et al. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol. Evol. 11, 570–579 (2020).
Everett, J. D. et al. Weddell Sea Marine Protected Area (WSMPA) Phase 2. Norwegian Polar Institute https://mathmarecol.shinyapps.io/WSMPA2/ (2024).
Pınarbaşı, K., Galparsoro, I. & Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Mar. Policy 108, 103658 (2019).
Boussarie, G., Kopp, D., Lavialle, G., Mouchet, M. & Morfin, M. Marine spatial planning to solve increasing conflicts at sea: a framework for prioritizing offshore windfarms and marine protected areas. J. Environ. Manage. 339, 117857 (2023).
Sinclair, S. P. et al. The use, and usefulness, of spatial conservation prioritizations. Conserv. Lett. 11, e12459 (2018).
Balbar, A. C. & Metaxas, A. The current application of ecological connectivity in the design of marine protected areas. Glob. Ecol. Conserv. 17, e00569 (2019).
Samsing, F., Johnsen, I., Treml, E. A. & Dempster, T. Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int. J. Parasitol. 49, 277–286 (2019).
Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).
Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. TREE 33, 441–457 (2018).
Maxwell, S. M. et al. Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Mar. Pol. 58, 42–50 (2015).
Vigo, M. et al. Dynamic marine spatial planning for conservation and fisheries benefits. Fish Fish. 25, 630–646 (2024).
Erisman, B. et al. Fish spawning aggregations: where well-placed management actions can yield big benefits for fisheries and conservation. Fish Fish. 18, 128–144 (2017).
Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).
Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J. & Laidre, K. L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Modell. 264, 83–97 (2013).
Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Change Biol. 25, 2544–2559 (2019).
Gill, J. A., Alves, J. A. & Gunnarsson, T. G. Mechanisms driving phenological and range change in migratory species. Phil. Trans. R. Soc. B 374, 20180047 (2019).
Robinson, R. A. et al. Travelling through a warming world: climate change and migratory species. Endanger. Species Res. 7, 87–99 (2009).
Meek, M. H. et al. Understanding local adaptation to prepare populations for climate change. BioScience 73, 36–47 (2023).
Gilbert, S. L. et al. Conservation triage at the trailing edge of climate envelopes. Conserv. Biol. 34, 289–292 (2020).
Schoepf, V. et al. Corals at the edge of environmental limits: a new conceptual framework to re-define marginal and extreme coral communities. Sci. Total. Environ. 884, 163688 (2023).
Nielsen, E. S. et al. Molecular ecology meets systematic conservation planning. TREE 38, 143–155 (2023).
Schwalm, D. et al. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Glob. Change Biol. 22, 1572–1584 (2016).
Chardon, N. I., Pironon, S., Peterson, M. L. & Doak, D. F. Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide-spread plant species. Ecography 43, 60–74 (2020).
Theodoridis, S., Patsiou, T. S., Randin, C. & Conti, E. Forecasting range shifts of a cold-adapted species under climate change: are genomic and ecological diversity within species crucial for future resilience? Ecography 41, 1357–1369 (2018).
Thomassen, H. A. et al. Modeling environmentally associated morphological and genetic variation in a rainforest bird, and its application to conservation prioritization. Evol. Appl. 3, 1–16 (2010).
McClanahan, T. R. et al. Diversification of refugia types needed to secure the future of coral reefs subject to climate change. Cons. Biol. 38, e14108 (2024).
Hällfors, M. H. et al. Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecol. Appl. 26, 1154–1169 (2016).
Duncanson, L. et al. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 14, 2908 (2023).
Dabalà, A. et al. Priority areas to protect mangroves and maximise ecosystem services. Nat. Commun. 14, 5863 (2023).
Neugarten, R. A. et al. Mapping the planet’s critical areas for biodiversity and nature’s contributions to people. Nat. Commun. 15, 261 (2024).
Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).
Sonntag, S., Pongratz, J., Reick, C. H. & Schmidt, H. Reforestation in a high-CO2 world — higher mitigation potential than expected, lower adaptation potential than hoped for. Geophys. Res. Lett. 43, 6546–6553 (2016).
Abarca, H. et al. Spatial prioritisation of management zones in protected areas for the integration of multiple objectives. Biodivers. Conserv. 31, 1197–1215 (2022).
Schupp, M. F. et al. Toward a common understanding of ocean multi-use. Front. Mar. Sci. 6, 165 (2019).
Pinsky, M. L., Rogers, L. A., Morley, J. W. & Frölicher, T. L. Ocean planning for species on the move provides substantial benefits and requires few trade-offs. Sci. Adv. 6, eabb8428 (2020).
Buotte, P. C., Law, B. E., Ripple, W. J. & Berner, L. T. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 30, e02039 (2020).
Reside, A. E., VanDerWal, J. & Moran, C. Trade-offs in carbon storage and biodiversity conservation under climate change reveal risk to endemic species. Biol. Conserv. 207, 9–16 (2017).
Howarth, C. & Robinson, E. J. Z. Effective climate action must integrate climate adaptation and mitigation. Nat. Clim. Change 14, 300–301 (2024).
Lawler, J., Watson, J. & Game, E. Conservation in the face of climate change: recent developments. F1000Res https://doi.org/10.12688/f1000research.6490.1 (2015).
Meehan, M. C., Ban, N. C., Devillers, R., Singh, G. G. & Claudet, J. How far have we come? A review of MPA network performance indicators in reaching qualitative elements of Aichi Target 11. Conserv. Lett. 13, e12746 (2020).
Morrison, T. H. Evolving polycentric governance of the Great Barrier Reef. Proc. Natl Acad. Sci. USA 114, E3013–E3021 (2017).
Ban, N. C. et al. Systematic conservation planning: a better recipe for managing the high seas for biodiversity conservation and sustainable use. Conserv. Lett. 7, 41–54 (2014).
Metaxas, A., Lacharité, M. & de Mendonça, S. N. Hydrodynamic connectivity of habitats of deep-water corals in Corsair Canyon, northwest Atlantic: a case for cross-boundary conservation. Front. Mar. Sci. 6, 554 (2019).
Arafeh-Dalmau, N. et al. Integrating climate adaptation and transboundary management: guidelines for designing climate-smart marine protected areas. One Earth 6, 1523–1541 (2023).
Boothroyd, A., Adams, V., Alexander, K. & Hill, N. Benefits and risks of incremental protected area planning in the Southern Ocean. Nat. Sustain. 6, 696–705 (2023).
Pulp Mills on the River Uruguay (Argentina v. Uruguay). International Court of Justice https://www.icj-cij.org/case/135 (2010).
Harris, J. L., Estradivari, E., Fox, H. E., McCarthy, O. S. & Ahmadia, G. N. Planning for the future: incorporating global and local data to prioritize coral reef conservation. Aquat. Conserv. 27, 65–77 (2017).
Adams, V. M. et al. Scheduling incremental actions to build a comprehensive national protected area network for Papua New Guinea. Conserv. Sci. Pract. 3, e354 (2021).
Gaymer, C. F. et al. Merging top-down and bottom-up approaches in marine protected areas planning: experiences from around the globe. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 128–144 (2014).
Li, B. V. & Pimm, S. L. How China expanded its protected areas to conserve biodiversity. Curr. Biol. 30, R1334–R1340 (2020).
Lagabrielle, E., Lombard, A. T., Harris, J. M. & Livingstone, T.-C. Multi-scale multi-level marine spatial planning: a novel methodological approach applied in South Africa. PLoS ONE 13, e0192582 (2018).
Pressey, R. L., Mills, M., Weeks, R. & Day, J. C. The plan of the day: managing the dynamic transition from regional conservation designs to local conservation actions. Biol. Conserv. 166, 155–169 (2013).
Kadykalo, A. N., Cooke, S. J. & Young, N. The role of western-based scientific, Indigenous and local knowledge in wildlife management and conservation. People Nat. 3, 610–626 (2021).
Cámara-Leret, R. & Dennehy, Z. Information gaps in indigenous and local knowledge for science-policy assessments. Nat. Sustain. 2, 736–741 (2019).
Chaplin-Kramer, R. et al. Transformation for inclusive conservation: evidence on values, decisions, and impacts in protected areas. Curr. Opin. Environ. Sustain. 64, 101347 (2023).
Lynch, A. J. et al. Managing for RADical ecosystem change: applying the resist–accept–direct (RAD) framework. Front. Ecol. Environ. 19, 461–469 (2021).
Ward, N. K. et al. Reimagining large river management using the resist–accept–direct (RAD) framework in the Upper Mississippi River. Ecol. Process. 12, 48 (2023).
Handler, S. D., Ledee, O. E., Hoving, C. L., Zuckerberg, B. & Swanston, C. W. A menu of climate change adaptation actions for terrestrial wildlife management. Wildl. Soc. Bull. 46, e1331 (2022).
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdisc. Rev. Clim. 10, e551 (2019).
Muhling, B. A. et al. Predictability of species distributions deteriorates under novel environmental conditions in the California Current System. Front. Mar. Sci. 7, 589 (2020).
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Patrício, A. R., Hawkes, L. A., Monsinjon, J. R., Godley, B. J. & Fuentes, M. M. P. B. Climate change and marine turtles: recent advances and future directions. Endanger. Species Res. 44, 363–395 (2021).
Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. https://doi.org/10.1029/2011GL050087 (2012).
García-Roselló, E., González-Dacosta, J. & Lobo, J. M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 283, 110118 (2023).
Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).
Tulloch, V. J. D. et al. Minimizing cross-realm threats from land-use change: a national-scale conservation framework connecting land, freshwater and marine systems. Biol. Conserv. 254, 108954 (2021).
Makino, A. et al. The effect of applying alternate IPCC climate scenarios to marine reserve design for range changing species. Conserv. Lett. 8, 320–328 (2015).
Rose, N.-A. & Burton, P. J. Using bioclimatic envelopes to identify temporal corridors in support of conservation planning in a changing climate. For. Ecol. Manag. 258, S64–S74 (2009).