Forb diversity globally is harmed by nutrient enrichment but can be rescued by large mammalian herbivory


  • Bond, W. J. & Parr, C. L. Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol. Conserv. 143, 2395–2404 (2010).


    Google Scholar
     

  • Pokorny, M. L., Sheley, R. L., Svejear, T. J. & Engel, R. E. Plant species diversity in a grassland plant community: evidence for forbs as a critical management consideration. West. North Am. Nat.64, 219–230 (2004).


    Google Scholar
     

  • Török, P., Brudvig, L. A., Kollmann, J., N. Price, J. & Tóthmérész, B. The present and future of grassland restoration. Restor. Ecol. 29, e13378 (2021).


    Google Scholar
     

  • Simanonok, S. C., Otto, C. R. V. & Iovanna, R. Forbs included in conservation seed mixes exhibit variable blooming detection rates and cost-effectiveness: implications for pollinator habitat design. Restor. Ecol. 30, e13657 (2022).


    Google Scholar
     

  • Maestre, F. T. et al. Grazing and ecosystem service delivery in global drylands. Science 378, 915–920 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    PubMed 

    Google Scholar
     

  • Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evolut.5, 65–73 (2014).


    Google Scholar
     

  • Siebert, F. & Dreber, N. Forb ecology research in dry African savannas: Knowledge, gaps, and future perspectives. Ecol. Evolut.9, 7875–7891 (2019).


    Google Scholar
     

  • Tognetti, P. M. et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proc. Natl. Acad. Sci. USA118, e2023718118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muehleisen, A. J. et al. Nutrient addition drives declines in grassland species richness primarily via enhanced species loss. J. Ecol. 111, 552–563 (2023).

    CAS 

    Google Scholar
     

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Large mammalian herbivores affect arthropod food webs via changes in vegetation characteristics and microclimate. J. Ecol. 11, 2077-2089 (2023).

  • Harrison, S. P., LaForgia, M. L. & Latimer, A. M. Climate-driven diversity change in annual grasslands: drought plus deluge does not equal normal. Glob. Change Biol. 24, 1782–1792 (2018).


    Google Scholar
     

  • Chesson, P. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58, 211–237 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).

    PubMed 

    Google Scholar
     

  • Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. 112, 797–802 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartomeus, I. & Godoy, O. Biotic controls of plant coexistence. J. Ecol. 106, 1767–1772 (2018).


    Google Scholar
     

  • Stevens, C. J., Dise, N. B., Gowing, D. J. G. & Mountford, J. O. Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Glob. Change Biol. 12, 1823–1833 (2006).


    Google Scholar
     

  • Song, L. et al. Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. Biogeosciences 8, 2341–2350 (2011).


    Google Scholar
     

  • Lannes, L. S., Bustamante, M. M. C., Edwards, P. J. & Olde Venterink, H. Native and alien herbaceous plants in the Brazilian Cerrado are (co-)limited by different nutrients. Plant Soil 400, 231–243 (2016).

    CAS 

    Google Scholar
     

  • Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).

    PubMed 

    Google Scholar
     

  • Valliere, J. M. et al. Declines in native forb richness of an imperiled plant community across an anthropogenic nitrogen deposition gradient. Ecosphere 11, e03032 (2020).


    Google Scholar
     

  • Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evolut.13, 261–265 (1998).

    CAS 

    Google Scholar
     

  • Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).

    PubMed 

    Google Scholar
     

  • Bråthen, K. A., Pugnaire, F. I. & Bardgett, R. D. The paradox of forbs in grasslands and the legacy of the mammoth steppe. Front. Ecol. Environ. 19, 584–592 (2021).


    Google Scholar
     

  • Wang, X., Schütz, M. & Risch, A. C. Size-selective exclusion of mammals and invertebrates differently affects grassland plant communities depending on vegetation type. J. Ecol. 109, 1703–1716 (2021).

    CAS 

    Google Scholar
     

  • Price, J. N. et al. Evolutionary history of grazing and resources determine herbivore exclusion effects on plant diversity. Nat. Ecol. Evol. 6, 1290–1298 (2022).

    PubMed 

    Google Scholar
     

  • Tilman, D. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58, 3–15 (1990).


    Google Scholar
     

  • Coleman, H. M. & Levine, J. M. Mechanisms underlying the impacts of exotic annual grasses in a coastal California meadow. Biol. Invasions 9, 65–71 (2007).


    Google Scholar
     

  • Seabloom, E. W. et al. Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat. Commun. 6, 7710 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 6036 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeMalach, N., Zaady, E. & Kadmon, R. Light asymmetry explains the effect of nutrient enrichment on grassland diversity. Ecol. Lett. 20, 60–69 (2017).

    PubMed 

    Google Scholar
     

  • Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature 611, 301–305 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilfahrt, P. A. et al. Nothing lasts forever: Dominant species decline under rapid environmental change in global grasslands. J. Ecol. 111, 2472–2482 (2023).


    Google Scholar
     

  • Harrison, S. P., Gornish, E. S. & Copeland, S. Climate-driven diversity loss in a grassland community. Proc. Natl. Acad. Sci. 112, 8672–8677 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LaForgia, M. L., Spasojevic, M. J., Case, E. J., Latimer, A. M. & Harrison, S. P. Seed banks of native forbs, but not exotic grasses, increase during extreme drought. Ecology 99, 896–903 (2018).

    PubMed 

    Google Scholar
     

  • Hallett, L. M., Shoemaker, L. G., White, C. T. & Suding, K. N. Rainfall variability maintains grass-forb species coexistence. Ecol. Lett. 22, 1658–1667 (2019).

    PubMed 

    Google Scholar
     

  • van Klink, R., van der Plas, F., van Noordwijk, C. G., WallisDeVries, M. F. & Olff, H. Effects of large herbivores on grassland arthropod diversity. Biol. Rev. 90, 347–366 (2015).

    PubMed 

    Google Scholar
     

  • Boutin, M. et al. Nitrogen deposition and climate change have increased vascular plant species richness and altered the composition of grazed subalpine grasslands. J. Ecol. 105, 1199–1209 (2017).


    Google Scholar
     

  • David, T. I., Storkey, J. & Stevens, C. J. Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod-Plant Interact. 13, 671–684 (2019).


    Google Scholar
     

  • Cutter, J. et al. Cattle grazing results in greater floral resources and pollinators than sheep grazing in low-diversity grasslands. Ecol. Evolut.12, e8396 (2022).


    Google Scholar
     

  • Lasway, J. V. et al. Positive effects of low grazing intensity on East African bee assemblages mediated by increases in floral resources. Biol. Conserv. 267, 109490 (2022).


    Google Scholar
     

  • Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130164 (2013).


    Google Scholar
     

  • Li, W. et al. Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus. Environ. Pollut. 309, 119720 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • You, C. et al. Grass and forbs respond differently to nitrogen addition: a meta-analysis of global grassland ecosystems. Sci. Rep. 7, 1563 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaney, J. T., Jokela, K. J. & Debinski, D. M. Seasonal succession of pollinator floral resources in four types of grasslands. Ecosphere 6, art243 (2015).


    Google Scholar
     

  • Seabloom, E. W., Harpole, W. S., Reichman, O. J. & Tilman, D. Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc. Natl. Acad. Sci. 100, 13384–13389 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A. & Vitousek, P. M. Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71, 478–491 (1990).


    Google Scholar
     

  • Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Stevens, C. J. et al. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environ. Pollut. 159, 2243–2250 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Diekmann, M. et al. Long-term changes in calcareous grassland vegetation in North-western Germany–no decline in species richness, but a shift in species composition. Biol. Conserv. 172, 170–179 (2014).


    Google Scholar
     

  • Hickman, K. R. & Hartnett, D. C. Effects of grazing intensity on growth, reproduction, and abundance of three palatable forbs in Kansas tallgrass prairie. Plant Ecol. 159, 23–33 (2002).


    Google Scholar
     

  • Van Coller, H., Siebert, F., Scogings, P. F. & Ellis, S. Herbaceous responses to herbivory, fire and rainfall variability differ between grasses and forbs. South Afr. J. Bot. 119, 94–103 (2018).


    Google Scholar
     

  • Zhang, C. et al. Grassland community composition response to grazing intensity under different grazing regimes. Rangel. Ecol. Manag. 71, 196–204 (2018).


    Google Scholar
     

  • Cao, F. et al. Effects of grazing on grassland biomass and biodiversity: a global synthesis. Field Crops Res. 306, 109204 (2024).


    Google Scholar
     

  • Van Sundert, K. et al. Fertilized graminoids intensify negative drought effects on grassland productivity. Glob. Change Biol. 27, 2441–2457 (2021).


    Google Scholar
     

  • Hallett, L. M., Stein, C. & Suding, K. N. Functional diversity increases ecological stability in a grazed grassland. Oecologia 183, 831–840 (2017).

    PubMed 

    Google Scholar
     

  • Griffin-Nolan, R. J. et al. Shifts in plant functional composition following long-term drought in grasslands. J. Ecol. 107, 2133–2148 (2019).

    CAS 

    Google Scholar
     

  • Tilman, E. A., Tilman, D., Crawley, M. J. & Johnston, A. E. Biological weed control via nutrient competition: potassium limitation of dandelions. Ecol. Appl. 9, (1999).

  • Phillips, R. D., Peakall, R., van der Niet, T. & Johnson, S. D. Niche perspectives on plant–pollinator interactions. Trends Plant Sci. 25, 779–793 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Levine, J. M. & D’Antonio, C. M. Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87, 15–26 (1999).


    Google Scholar
     

  • Levine, J. M. & HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • M’Gonigle, L. K., Ponisio, L. C., Cutler, K. & Kremen, C. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol. Appl. 25, 1557–1565 (2015).

    PubMed 

    Google Scholar
     

  • Johnson, D. P., Catford, J. A., Driscoll, D. A. & Gibbons, P. Seed addition and biomass removal key to restoring native forbs in degraded temperate grassland. Appl. Veg. Sci. 21, 219–228 (2018).


    Google Scholar
     

  • Rotchés-Ribalta, R., Winsa, M., Roberts, S. P. M. & Öckinger, E. Associations between plant and pollinator communities under grassland restoration respond mainly to landscape connectivity. J. Appl. Ecol. 55, 2822–2833 (2018).


    Google Scholar
     

  • Ebeling, A. et al. Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. J. Ecol. 110, 327–339 (2022).

    CAS 

    Google Scholar
     

  • Veen, G. F., Vermaat, A. T., Sitters, J. & Bakker, E. S. Vertebrate grazing can mitigate impacts of nutrient addition on plant diversity and insect abundance in a semi-natural grassland. Oikos e10422 https://doi.org/10.1111/oik.10422 (2024).

  • Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Orford, K. A., Murray, P. J., Vaughan, I. P. & Memmott, J. Modest enhancements to conventional grassland diversity improve the provision of pollination services. J. Appl. Ecol. 53, 906–915 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majetic, C. J., Fetters, A. M., Beck, O. M., Stachnik, E. F. & Beam, K. M. Petunia floral trait plasticity in response to soil nitrogen content and subsequent impacts on insect visitation. Flora 232, 183–193 (2017).


    Google Scholar
     

  • Dyer, A. G. et al. Fragmentary blue: resolving the rarity paradox in flower colors. Front. Plant Sci. 11, (2021).

  • Burkle, L. A. & Irwin, R. E. Beyond biomass: measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol. 98, 705–717 (2010).


    Google Scholar
     

  • Ceulemans, T., Hulsmans, E., Vanden Ende, W. & Honnay, O. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L. PLoS ONE 12, e0175160 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biederman, L. et al. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains. PLOS ONE 12, e0178440 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garbowski, M. et al. Nutrient enrichment alters seasonal β-diversity in global grasslands. J. Ecol. 111, 2134-2145 (2023).

  • Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).


    Google Scholar
     

  • Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evolut.25, 345–353 (2010).


    Google Scholar
     

  • Vanbergen, A. J. Initiative, the I. P. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).


    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2022).

  • Pinheiro, J. et al. Package ‘nlme’. Linear and nonlinear mixed effects models, version 3, (2017).

  • Bates, D. et al. Package ‘lme4’. URL http://lme4.r-forge.r-project.org (2009).

  • Lüdecke, D. & Lüdecke, M. D. Package ‘sjPlot’. R package version 1, (2015).

  • Hope, R. M., Hope, M. R. M. & Collate’CI, R. Package ‘Rmisc’. group 101, 2 (2013).


    Google Scholar
     

  • Fox, J., Weisberg, S. & Price, B. Car: Companion to Applied Regression. 3.1-3 https://doi.org/10.32614/CRAN.package.car (2001).

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrio, I. et al. Data for Forb diversity globally is harmed by nutrient enrichment but can be rescued by large mammalian herbivory. Environmental Data Initiative https://doi.org/10.6073/PASTA/62E2C0F1BC1CCB5A29D63B513BB66810 (2025).

  • Nelson, R. & Sullivan, L. Forb diversity globally is harmed by nutrient enrichment but can be rescued by large mammalian herbivory. https://doi.org/10.21203/rs.3.rs-4810381/v1 (2024).



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img