The late rise of sky-island vegetation in the European Alps


  • Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feijó, A. et al. Mammalian diversification bursts and biotic turnovers are synchronous with cenozoic geoclimatic events in asia. Proc. Natl Acad. Sci. USA 119, e2207845119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sklenár, P., Hedberg, I. & Cleef, A. M. Island biogeography of tropical alpine floras. J. Biogeogr. 41, 287–297 (2014).

    Article 

    Google Scholar
     

  • McCormack, J. E., Huang, H. & Knowles, L. L. in Encyclopedia of Islands (eds Gillespie, R. G. & Clague, D.) 839–843 (Univ. Chicago Press, 2009).

  • Ebersbach, J., Schnitzler, J., Favre, A. & Muellner-Riehl, A. Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evol. Biol. 17, 119 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, W.-N., Ree, R. H., Spicer, R. A. & Xing, Y.-W. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578–581 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boschman, L. M. & Condamine, F. L. Mountain radiations are not only rapid and recent: ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations. Glob. Planet. Change 208, 103704 (2022).

    Article 

    Google Scholar
     

  • Sedano, R. E. & Burns, K. J. Are the Northern Andes a species pump for neotropical birds? Phylogenetics and biogeography of a clade of Neotropical tanagers (Aves: Thraupini). J. Biogeogr. 37, 325–343 (2010).

    Article 

    Google Scholar
     

  • Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandziora, M. et al. The enigmatic tropical alpine flora on the african sky islands is young, disturbed, and unsaturated. Proc. Natl Acad. Sci. USA 119, e2112737119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nevado, B., Contreras-Ortiz, N., Hughes, C. & Filatov, D. A. Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. New Phytol. 219, 779–793 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Evolutionary history of the Arctic flora. Nat. Commun. 14, 4021 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasconcelos, T. N. C. et al. Fast diversification through a mosaic of evolutionary histories characterizes the endemic flora of ancient neotropical mountains. Proc. R. Soc. B Biol. Sci. 287, 20192933 (2020).

    Article 

    Google Scholar
     

  • Kadereit, J. W. The role of in situ species diversification for the evolution of high vascular plant species diversity in the European Alps—a review and interpretation of phylogenetic studies of the endemic flora of the Alps. Perspect. Plant Ecol. Evol. Syst. 26, 28–38 (2017).

    Article 

    Google Scholar
     

  • Ball, J. On the origin of the flora of the European Alps. Proc. R. Geogr. Soc. 1, 564–589 (1879).


    Google Scholar
     

  • Ozenda, P. La végétation de la chai^ne alpine dans l’espace montagnard européen (Masson, 1985).

  • Ozenda, P. On the genesis of the plant population in the Alps: new or critical aspects. C. R. Biol. 332, 1092–1103 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kadereit, J. W., Licht, W. & Uhink, C. H. Asian relationships of the flora of the European Alps. Plant Ecol. Divers. 1, 171–179 (2008).

    Article 

    Google Scholar
     

  • Favre, A. et al. Out of Tibet: the spatio-temporal evolution of Gentiana (Gentianaceae). J. Biogeogr. 43, 1967–1978 (2016).

    Article 

    Google Scholar
     

  • Comes, H. P. & Kadereit, J. W. Spatial and temporal patterns in the evolution of the flora of the European Alpine system. TAXON 52, 451–462 (2003).

    Article 

    Google Scholar
     

  • Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan mountains. New Phytol. 207, 275–282 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Boucher, F. C., Zimmermann, N. E. & Conti, E. Allopatric speciation with little niche divergence is common among Alpine Primulaceae. J. Biogeogr. 43, 591–602 (2016).

    Article 

    Google Scholar
     

  • Smyčka, J. et al. Tempo and drivers of plant diversification in the European mountain system. Nat. Commun. 13, 2750 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fauquette, S. et al. Quantifying the Eocene to Pleistocene topographic evolution of the southwestern Alps, France and Italy. Earth Planet. Sci. Lett. 412, 220–234 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gradwohl, G., Stüwe, K., ROBL, J. & Liebl, M. in Geodynamics of the Alps Vol. 1 (Rosenberg, C. L. & Bellahsen, N.) 115–160 (ISTE, 2023).

  • Krsnik, E. et al. Miocene high elevation in the Central Alps. Solid Earth 12, 2615–2631 (2021).

    Article 

    Google Scholar
     

  • Fox, M., Herman, F., Willett, S. D. & Schmid, S. M. The exhumation history of the European Alps inferred from linear inversion of thermochronometric data. Am. J. Sci. 316, 505–541 (2016).

    Article 

    Google Scholar
     

  • Herwegh, M. et al. Late stages of continent–continent collision: timing, kinematic evolution, and exhumation of the Northern rim (Aar Massif) of the Alps. Earth Sci. Rev 200, 102959 (2020).

    Article 

    Google Scholar
     

  • Winterberg, S. & Willett, S. D. Greater Alpine river network evolution, interpretations based on novel drainage analysis. Swiss J. Geosci. 112, 3–22 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Favre, A. et al. The role of the uplift of the Qinghai Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hagen, O. et al. Mountain building, climate cooling and the richness of cold-adapted plants in the Northern Hemisphere. J. Biogeogr. 46, 1792–1807 (2019).

    Article 

    Google Scholar
     

  • Sternai, P. et al. Present-day uplift of the European Alps: evaluating mechanisms and models of their relative contributions. Earth Sci. Rev. 190, 589–604 (2019).

    Article 

    Google Scholar
     

  • Valla, P. G., Sternai, P. & Fox, M. How climate, uplift and erosion shaped the Alpine topography. Elements 17, 41–46 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Winkworth, R. Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Org. Divers. Evol. 5, 237–247 (2005).

    Article 

    Google Scholar
     

  • Flantua, S. G., O’Dea, A., Onstein, R. E., Giraldo, C. & Hooghiemstra, H. The flickering connectivity system of the North Andean páramos. J. Biogeogr. 46, 1808–1825 (2019).

    Article 

    Google Scholar
     

  • Schonswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14, 3547–3555 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez, N. et al. History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol. Lett. 12, 632–640 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Thiel-Egenter, C. et al. Break zones in the distributions of alleles and species in alpine plants: break zones in allele and species distributions. J. Biogeogr. 38, 772–782 (2011).

    Article 

    Google Scholar
     

  • Taberlet, P. et al. Genetic diversity in widespread species is not congruent with species richness in Alpine plant communities. Ecol. Lett. 15, 1439–1448 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Paun, O., Schönswetter, P., Winkler, M., Consortium, I. & Tribsch, A. Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol. Ecol. 17, 4263–4275 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L., Comes, H. P. & Kadereit, J. W. The temporal course of quaternary diversification in the European high mountain endemic Primula sect. Auricula (Primulaceae). Int. J. Plant Sci. 165, 191–207 (2004).

    Article 

    Google Scholar
     

  • Parisod, C. Plant speciation in the face of recurrent climate changes in the Alps. Alp. Bot. 132, 21–28 (2022).

    Article 

    Google Scholar
     

  • Boucher, F. C. et al. Discovery of cryptic plant diversity on the rooftops of the Alps. Sci. Rep. 11, 11128 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsos, I. G. et al. The treasure vault can be opened: large-scale genome skimming works well using herbarium and silica gel dried material. Plants 9, 432 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Late quaternary dynamics of Arctic biota from ancient environmental genomics. Nature 600, 86–92 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavergne, S. et al. Towards a comprehensive barcoding and phylogenomic reference for the European Arctic–alpine flora. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-6136147/v1 (2025).

  • Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J.-P. Flora Alpina Vols 1–3 (Haupt, 2004).

  • Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramírez-Barahona, S., Sauquet, H. & Magallón, S. The delayed and geographically heterogeneous diversification of flowering plant families. Nat. Ecol. Evol. 4, 1232–1238 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hörandl, E. & Emadzade, K. The evolution and biogeography of alpine species in Ranunculus (Ranunculaceae): a global comparison. TAXON 60, 415–426 (2011).

    Article 

    Google Scholar
     

  • Wagner, N. D., He, L. & Hörandl, E. The evolutionary history, diversity, and ecology of willows (Salix L.) in the European Alps. Diversity 13, 146 (2021).

    Article 

    Google Scholar
     

  • Carruthers, T. et al. Repeated upslope biome shifts in Saxifraga during Late-Cenozoic climate cooling. Nat. Commun. 15, 1100 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valente, L. M., Phillimore, A. B. & Etienne, R. S. Equilibrium and non equilibrium dynamics simultaneously operate in the Galápagos Islands. Ecol. Lett. 18, 844–852 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosbrugger, V., Favre, A., Muellner-Riehl, A. N., Päckert, M. & Mulch, A. in Mountains, Climate and Biodiversity (eds Hoorn, C. et al.) Ch. 28 (Wiley-Blackwell, 2018).

  • Muellner Riehl, A. N. et al. Origins of global mountain plant biodiversity: testing the ‘mountain geobiodiversity hypothesis’. J. Biogeogr. 46, 2826–2838 (2019).

    Article 

    Google Scholar
     

  • MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • Legrain, N., Stüwe, K. & Wölfler, A. Incised relict landscapes in the Eastern Alps. Geomorphology 221, 124–138 (2014).

    Article 

    Google Scholar
     

  • Muttoni, G. et al. Onset of major Pleistocene glaciations in the Alps. Geology 31, 989–992 (2003).

    Article 

    Google Scholar
     

  • Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation: topographic isolation and endemism. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).

    Article 

    Google Scholar
     

  • Aguilée, R., Claessen, D. & Lambert, A. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution 67, 1291–1306 (2013).

    PubMed 

    Google Scholar
     

  • Thomas, A. et al. Multiple origins of mountain biodiversity in New Zealand’s largest plant radiation. J. Biogeogr. 50, 947–960 (2023).

    Article 

    Google Scholar
     

  • Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps: range filling of alpine plants. Glob. Ecol. Biogeogr. 21, 829–840 (2012).

    Article 

    Google Scholar
     

  • Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article 

    Google Scholar
     

  • Qian, H. & Sandel, B. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Glob. Ecol. Biogeogr. 26, 1258–1269 (2017).

    Article 

    Google Scholar
     

  • Gehrke, B. Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments. PhytoKeys 96, 111–125 (2018).

    Article 

    Google Scholar
     

  • Qian, H., Ricklefs, R. E. & Thuiller, W. Evolutionary assembly of flowering plants into sky islands. Nat. Ecol. Evol. 5, 640–646 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pouchon, C. et al. Orthoskim: in silico sequence capture from genomic and transcriptomic libraries for phylogenomic and barcoding applications. Mol. Ecol. Resour. 22, 2018–2037 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFTmultiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. Iq-tree 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H.-T. et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461–470 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salisbury, B. A. & Kim, J. Ancestral state estimation and taxon sampling density. Syst. Biol. 50, 557–564 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems 2nd edn (Springer, 2011).

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindeløv, J. K. mcp: an R package for regression with multiple change points. OSF Preprints https://doi.org/10.31219/osf.io/fzqxv (2020).

  • Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Article 

    Google Scholar
     

  • Wootton, L. M. et al. The late rise of sky-island vegetation in the European Alps: supplementary data. figshare https://doi.org/10.6084/m9.figshare.25459135 (2025).

  • PhyloAps & PhyloNorway. A Genome Skim Database for the Arctic-Alpine Flora (Arctic-Alpine PhyloSkims, accessed 1 February 2024); https://phyloalps.osug.fr/main/home



  • Source link

    More From Forest Beat

    Morphological variation and genetic diversity of Circinaria contorta (Megasporaceae, Ascomycota), including...

    Phenotypic analyses of Circinaria contorta specimens During morphological and anatomical studies several differences were found within the studied material, that allowed us to...
    Biodiversity
    10
    minutes

    The biology and toxinology of blunt-nosed vipers

    Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Complex cocktails: the evolutionary novelty of venoms. Trends...
    Biodiversity
    27
    minutes

    Thresholds of functional trait diversity driven by land use intensification

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).Article  ...
    Biodiversity
    8
    minutes

    why finding Leadbeater’s possum in NSW is such big news

    Until now, Victorians believed their state was the sole home for Leadbeater’s possum, their critically endangered state faunal emblem....
    Biodiversity
    5
    minutes
    spot_imgspot_img